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Nearest Neighbour Decoding with
Pilot-Assisted Channel Estimation for

Fading Multiple-Access Channels
A. Tauq Asyhari, Tobias Koch and Albert Guillén i Fàbregas

Abstract�—This paper studies a noncoherent multiple-input
multiple-output (MIMO) fading multiple-access channel (MAC).
The rate region that is achievable with nearest neighbour
decoding and pilot-assisted channel estimation is analysed and
the corresponding pre-log region, dened as the limiting ratio
of the rate region to the logarithm of the signal-to-noise ratio
(SNR) as the SNR tends to innity, is determined.

I. INTRODUCTION AND CHANNEL MODEL

We study a two-user multiple-input multiple-output
(MIMO) fading multiple-access channel (MAC), where two
terminals wish to communicate with a third one, and where
the channels between the terminals are MIMO fading channels.
We consider a noncoherent channel model, where all terminals
are aware of the statistics of the fading but not of its realisation.
We are interested in the achievable-rate region that can be
achieved with nearest neighbour decoding and pilot-assisted
channel estimation. We focus on the high signal-to-noise ratio
(SNR) regime. In particular, we study the pre-log region,
dened as the limiting ratio of the achievable-rate region to
log SNR as the SNR tends to innity.

The pre-log of point-to-point MIMO fading channels
achievable with nearest neighbour decoding and pilot-assisted
channel estimation was studied in [1]. It was demonstrated that
it coincides with the capacity pre-log (dened as the limiting
ratio of capacity to log SNR as the SNR tends to innity) for
multiple-input single-output (MISO) fading channels, derived
by Koch and Lapidoth [2], and that it achieves the best so far
known lower bound on the pre-log of MIMO fading channels,
derived by Etkin and Tse [3].

In this paper, we extend the analysis in [1] to the two-user
MIMO fading MAC where the rst user has nt,1 antennas, the
second user has nt,2 antennas and the receiver has nr antennas.
The channel model is depicted in Fig. 1. The channel output
at time instant k ∈ ! (where ! denotes the set of integers) is
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Fig. 1: The two-user MAC system model.

a complex-valued nr-dimensional random vector given by

Yk =
√

SNR H1,kx1,k +
√

SNR H2,kx2,k + Zk. (1)

Here xs,k ∈ "nt,s denotes the time-k channel input vector
corresponding to user s, s = 1, 2 (with " denoting the set of
complex numbers); Hs,k ∈ "nr×nt,s denotes the fading matrix
at time k corresponding to user s, s = 1, 2; SNR denotes the
average SNR for each transmit antenna; and Zk ∈ "nr denotes
the additive noise vector at time k.

The noise process {Zk, k ∈ !} is a sequence of inde-
pendent and identically distributed (i.i.d.) complex Gaussian
random vectors with zero mean and covariance matrix Inr ,
where Inr is the nr × nr identity matrix.

The fading processes {Hs,k, k ∈ !}, s = 1, 2 are stationary,
ergodic and Gaussian. We assume that the (nt,1 ·nr +nt,2 ·nr)
processes {Hs,k(r, t), k ∈ !}, s = 1, 2, r = 1, . . . , nr, t =
1, . . . , nt,s are independent and have the same law, with each
process having zero mean, unit variance and power spectral
density fH(λ), − 1

2 ≤ λ ≤ 1
2 . Thus, fH(·) is a nonnegative

function satisfying

E
[
Hs,k+m(r, t)H†

s,k(r, t)
]

=
∫ 1/2

−1/2
ei2πmλfH(λ)dλ (2)

where (·)† denotes complex conjugation. We further assume
that the power spectral density fH(·) has bandwidth λD ∈
(0, 1/2], i.e., fH(λ) = 0 for |λ| > λD and fH(λ) > 0
otherwise.

We nally assume that the fading processes {Hs,k, k ∈ !},
s = 1, 2 and the noise process {Zk, k ∈ !} are independent
and that their joint law does not depend on {xs,k, k ∈ !},
s = 1, 2. We consider a noncoherent channel model, where
the transmitters and the receiver are aware of the statistics of
{Hs,k, k ∈ !}, s = 1, 2 but not of their realisations.



2

Pilot Data No transmission

n +
“

n
L−nt,1−nt,2

+ 1
”

(nt,1 + nt,2)

L L(T − 1)L(T − 1)

s = 1,
t = 1

t = 2

s = 2, t = 1

Fig. 2: Structure of joint-transmission scheme, nt,1 = 2, nt,2 = 1, L = 7 and T = 2.

II. TRANSMISSION SCHEME

Both users transmit codewords and pilot symbols over the
channel (1). Codewords are used to convey the messages,
and pilot symbols are used to facilitate the estimation of the
fading coefcients at the receiver. To transmit the message
ms ∈ {1, . . . , enRs}, s = 1, 2, each user�’s encoder selects a
codeword of length n from a codebook Cs, where Cs, s = 1, 2
are drawn i.i.d. from an nt,s-variate, zero-mean, complex
Gaussian distribution of covariance matrix Int,s .

Orthogonal pilot vectors are used to estimate the fading
matrices for both users. The pilot vector ps,t ∈ "nt,s , s = 1, 2,
t = 1, . . . , nt,s used to estimate the fading coefcients from
transmit antenna t of user s is given by ps,t(t) = 1 and
ps,t(t′) = 0 for t′ &= t. For example, the rst pilot vector
of user s is given by (1, 0, . . . , 0)T, where (·)T denotes the
transpose. To estimate the fading matrices H1,k and H2,k,
each training period requires the (nt,1 + nt,2) pilot vectors
p1,1, . . . , p1,nt,1 , p2,1, . . . , p2,nt,2 .

The transmission scheme for the two-user setup extends the
scheme used for the single-user setup in [1]. We assume that
the transmission from both users is synchronised. Every L
time instants (for some L ≥ nt,1 + nt,2, L ∈ !), user 1
rst transmits the nt,1 pilot vectors p1,1, . . . , p1,nt,1 . Once
the transmission of the nt,1 pilot vectors is nished, user 2
transmits its nt,2 pilot vectors p2,1, . . . , p2,nt,2 . The codewords
for both users are then split up into blocks of (L − nt,1 −
nt,2) data vectors, which are transmitted simultaneously after
the (nt,1 + nt,2) pilot vectors. The process of transmitting
(L − nt,1 − nt,2) data vectors and (nt,1 + nt,2) pilot vectors
continues until all n data symbols are completed. Herein we
assume that n is an integer multiple of (L−nt,1−nt,2).1 Prior
to transmitting the rst data block, and after transmitting the
last data block, we introduce a guard period of L(T −1) time
instants (for some T ∈ !), where we transmit every L time
instants the (nt,1 + nt,2) pilot vectors but we do not transmit
data vectors in between. The guard period ensures that, at
every time instant, we can employ a channel estimator that
bases its estimation on the channel outputs corresponding to
the T past and the T future pilot transmissions. This facilitates

1If n is not an integer multiple of (L − nt,1 − nt,2), then the last (L −
nt,1 −nt,2) instants are not fully used by data vectors and contain therefore
time instants where we do not transmit anything. The thereby incurred loss
in information rate vanishes as n tends to innity.

the analysis but does not incur a loss in performance. The
above transmission scheme is illustrated in Fig. 2. The channel
estimator is described in the following.

Note that the total block-length of the above transmission
scheme (comprising data vectors, pilot vectors and guard
period) is given by

n′ = np + n + ng (3)

where np denotes the number of channel uses for pilot
symbols, and where ng denotes the number of channel uses
during the guard period, i.e.,

np =
(

n

L − nt,1 − nt,2
+ 1 + 2(T − 1)

)
(nt,1 + nt,2) (4)

ng = 2(L − nt,1 − nt,2)(T − 1). (5)

Once the transmission is completed, the decoder guesses
which message has been transmitted. The decoder consists
of two parts: a channel estimator and a data detector. The
channel estimator observes the channel output Yk, k ∈ P
corresponding to the past and future T pilot transmissions
and estimates Hs,k(r, t) using a linear interpolator, i.e., the
estimate Ĥ(T )

s,k (r, t) of the fading coefcient Hs,k(r, t) is given
by

Ĥ(T )
s,k (r, t) =

k+TL∑

k′=k−TL:
k′∈P

as,k′(r, t)Yk′ (r) (6)

where the coefcients as,k′(r, t) are chosen in order to min-
imise the mean-squared error. Here P denotes the set of time
indices where pilot symbols are transmitted, and D denotes
the set of time indices where data vectors of a codeword are
transmitted.

Note that, since the pilot symbols are transmitted only from
one user and one antenna at a time, the fading coefcients
corresponding to all transmit and receive antennas from both
users can be observed. Further note that, since the fading
processes {Hs,k(r, t), k ∈ !}, s = 1, 2, r = 1, . . . , nr,
t = 1, . . . , nt,s are independent, estimating Hs,k(r, t) only
based on {Yk(r), k ∈ !} rather than on {Yk, k ∈ !} incurs
no loss in optimality.

Since the time-lags between Hs,k, k ∈ D and the observa-
tions Yk′ , k′ ∈ P depend on k, it follows that the interpolation
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Fig. 3: Structure of TDMA scheme, nt,1 = 2, nt,2 = 1, L = 4 and T = 2.

error
E(T )

s,k (r, t) = Hs,k(r, t) − Ĥ(T )
s,k (r, t) (7)

is not stationary but cyclo-stationary with period L. Never-
theless, it can be shown that, irrespective of s, r and t, the
variance of the interpolation error

ε2s,T (#, r, t) = E

[∣∣∣Hs,k(r, t) − Ĥ(T )
s,k (r, t)

∣∣∣
2
]

(8)

tends to the following expression as T tends to innity [4]:

ε2(#) ! lim
T→∞

ε2s,T (#, r, t) (9)

= 1 −
∫ 1/2

−1/2

SNR |fHL,$(λ)|2

SNRfHL,0(λ) + 1
dλ (10)

where # = k mod L denotes the remainder of k/L. Here
fHL,$(·) is given by

fHL,$(λ) =
1
L

L−1∑

j=0

f̄H

(
λ− j

L

)
ei2π$ λ−j

L (11)

and f̄H(·) is the periodic function of period [−1/2, 1/2) that
coincides with fH(λ) for −1/2 ≤ λ ≤ 1/2. Furthermore, if

L ≤ 1
2λD

(12)

then |fHL,$(·)| becomes

|fHL,$(λ)| = fHL,0(λ) =
1
L

fH

(
λ

L

)
, −1

2
≤ λ ≤ 1

2
. (13)

In this case the interpolation error (10) becomes

ε2 = 1 −
∫ 1/2

−1/2

SNR (fH(λ))2

SNRfH(λ) + L
dλ (14)

which does not depend on # and vanishes as the SNR tends to
innity. Recall that λD denotes the bandwidth of fH(·). Thus,
(12) implies that no aliasing occurs as we undersample the
fading process L times.

From the received codeword {yk, k ∈ !} and the channel-
estimate matrices {Ĥ(T )

s,k , k ∈ D}, s = 1, 2 (which are
composed of the entries {ĥ(T )

s,k (r, t), k ∈ D}), the decoder
chooses the pair of messages (m̂1, m̂2) that minimises the
distance metric

(m̂1, m̂2) = arg min
(m1,m2)

D(m1, m2) (15)

where

D(m1, m2) !
∑

k∈D

∥∥∥∥yk −
√

SNR Ĥ(T )
1,k x1,k(m1)

−
√

SNR Ĥ(T )
2,k x2,k(m2)

∥∥∥∥
2

. (16)

In the following, we will refer to the above communication
scheme as the joint-transmission scheme.

We shall compare the joint-transmission scheme with a
time-division multiple access (TDMA) scheme, where each
user transmits its message using the transmission scheme
shown in Fig. 3. In particular, during the rst βn′ channel uses
(for some 0 ≤ β ≤ 1), user 1 transmits its codeword according
to the transmission scheme given in [1] (see also Fig. 3), while
user 2 is silent. (Here n′ is given in (3).) Then, during the
next (1 − β)n′ channel uses, user 2 transmits its codeword
according to the same transmission scheme, while user 1 is
silent. In both cases, the receiver guesses the corresponding
message ms, s = 1, 2 using a nearest neighbour decoder and
pilot-assisted channel estimation.

III. THE MAC PRE-LOG

Let R∗
1(SNR), R∗

2(SNR) and R∗
1+2(SNR) be the maximum

achievable rate for user 1, the maximum achievable rate for
user 2 and the maximum achievable sum-rate, respectively.
The achievable-rate region is given by the closure of the
convex hull of the set [5]

R =
{

R1(SNR), R2(SNR) :

R1(SNR) < R∗
1(SNR),

R2(SNR) < R∗
2(SNR),

R1(SNR) + R2(SNR) < R∗
1+2(SNR)

}
. (17)

We are interested in the pre-logs of R1(SNR) and R2(SNR),
dened as the limiting ratios of R1(SNR) and R2(SNR) to
the logarithm of the SNR as the SNR tends to innity. Thus,
the pre-log region is given by the closure of the convex hull
of the set

ΠR =
{
ΠR1 , ΠR2 : ΠR1 < ΠR∗

1
,

ΠR2 < ΠR∗
2
,

ΠR1 + ΠR2 < ΠR∗
1+2

}
(18)
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where

ΠR∗
1

! lim sup
SNR→∞

R∗
1(SNR)

log SNR
, (19)

ΠR∗
2

! lim sup
SNR→∞

R∗
2(SNR)

log SNR
, (20)

ΠR∗
1+2

! lim sup
SNR→∞

R∗
1+2(SNR)
log SNR

. (21)

The capacity pre-logs ΠC1 and ΠC2 are dened in the same
way but with R1(SNR) and R2(SNR) replaced by the respec-
tive capacities C1(SNR) and C2(SNR).

The pre-log for point-to-point MIMO fading channels has
been studied in a number of works, see, e.g., [1]�–[3], [6].
For example, it was shown in [1] that the pre-log of point-to-
point (nr×nt)-dimensional MIMO fading channels achievable
with nearest neighbour decoding and pilot-assisted channel
estimation is lower-bounded by

ΠR∗ ≥ min (nt, nr)
(

1 − min (nt, nr)
L∗

)
(22)

where L∗ is the largest integer satisfying L∗ ≤ 1
2λD

. It has
been observed that, if 1/(2λD) is an integer, then this lower
bound coincides with the best so far known lower bound on
the capacity pre-log derived by Etkin and Tse [3], namely,

ΠC ≥ min(nt, nr)
(
1 − min(nt, nr)µ

(
{λ : fH(λ) > 0}

))
(23)

where µ(·) denotes the Lebesgue measure on the interval
[−1/2, 1/2]. For MISO fading channels, the lower bound (22)
specialises to

ΠR∗
1
≥ 1 − 1

L∗ (24)

which coincides with the capacity pre-log [2]

ΠC = µ
(
{λ : fH(λ) = 0}

)
(25)

when 1/(2λD) is an integer. Thus, for point-to-point MISO
fading channels, and for 1/(2λD) being an integer, the
communication scheme described in Section II achieves the
capacity pre-log.

In the following theorem, we present our result on the pre-
log region of the two-user MIMO fading MAC achievable with
the joint-transmission scheme.
Theorem 1: Consider the MIMO fading MAC model (1).

Then, the pre-log region achievable with the joint-transmission
scheme described in Section II is the closure of the convex hull
of the set
{

ΠR1 , ΠR2 :

ΠR1 < min (nr, nt,1)
(

1 − nt,1 + nt,2

L∗

)
,

ΠR2 < min (nr, nt,2)
(

1 − nt,1 + nt,2

L∗

)
,

ΠR1 + ΠR2 < min (nr, nt,1 + nt,2)
(

1 − nt,1 + nt,2

L∗

) }

(26)

where L∗ is the largest integer satisfying L∗ ≤ 1
2λD

.

Proof: An outline of the proof is given in Section V.

Remark 1: The pre-log region given in Theorem 1 is the
largest region achievable with any transmission scheme that
uses (nt,1+nt,2)/L∗ of the time for transmitting pilot symbols.
Indeed, even if the channel estimator would be able to estimate
the fading coefcients perfectly, and even if we could decode
the data symbols using a maximum-likelihood decoder, the
capacity pre-log region (without pilot transmission) would be
given by the closure of the convex hull of the set [5], [7], [8]

{
(ΠR1 , ΠR2) : ΠR1 < min(nr, nt,1)

ΠR2 < min(nr, nt,2)

ΠR1 + ΠR2 < min(nr, nt,1 + nt,2)
}

(27)

which, after multiplying by 1 − (nt,1 + nt,2)/L∗ in order to
account for the pilot symbols, becomes (26). Thus, in order to
improve upon (26), one would need to design a transmission
scheme that employs less than (nt,1 + nt,2)/L∗ pilot symbols
per channel use.

Remark 2 (TDMA Pre-Log): Consider the MIMO fading
MAC model (1). Then, the pre-log region achievable with the
TDMA scheme described in Section II is the closure of the
convex hull of the set
{

ΠR1 , ΠR2 :

ΠR1 < βmin (nr, nt,1)
(
1 − nt,1

L∗

)
,

ΠR2 < (1 − β)min (nr, nt,2)
(
1 − nt,2

L∗

)
, 0 ≤ β ≤ 1

}

(28)

where L∗ is the largest integer satisfying L∗ ≤ 1
2λD

. This
follows directly from the pre-log of the point-to-point MIMO
fading channel (22).

Note that the sum of the pre-logs ΠR1 + ΠR2 is upper-
bounded by the capacity pre-log of the point-to-point MIMO
fading channel with (nt,1 + nt,2) transmit antennas and nr

receive antennas, since the point-to-point MIMO channel al-
lows for cooperation between the transmitting terminals. While
the capacity pre-log of point-to-point MIMO fading channels
remains an open problem, the capacity pre-log of point-to-
point MISO fading channels is known, cf. (25). It thus follows
from (25) that, for nr = nt,1 = nt,2 = 1, we have

ΠR1 + ΠR2 ≤ 1 − 2λD (29)

which together with the single-user constraints [6]

ΠR1 ≤ ΠC1 = 1 − 2λD (30)
ΠR2 ≤ ΠC2 = 1 − 2λD (31)

implies that TDMA achieves the capacity pre-log region of
the single-input single-output (SISO) fading MAC. The next
section provides a more detailed comparison between the joint-
transmission scheme and TDMA.
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IV. JOINT-TRANSMISSION VS. TDMA

In this section, we discuss how the joint-transmission
scheme described in Section II performs compared to TDMA.
To this end, we compare the sum-rate pre-log ΠR∗

1+2
of

the joint-transmission scheme (Theorem 1) with the sum-
rate pre-log of the TDMA scheme described in Section II
(Remark 2) as well as with the sum-rate pre-log of TDMA
when the receiver has knowledge of the realisations of the
fading processes {Hs,k, k ∈ !}, s = 1, 2. In the latter case,
the sum-rate pre-log is given by

ΠR∗
1+2

= βmin(nr, nt,1) + (1 − β)min(nr, nt,2). (32)

The following corollary presents a sufcient condition on L∗

under which the sum-rate pre-log of the joint-transmission
scheme is strictly larger than the sum-rate pre-log of the
coherent TDMA scheme (32), as well as a sufcient condition
on L∗ under which it is strictly smaller than the sum-rate
pre-log of the TDMA scheme given in Remark 2. Since (32)
is an upper bound on the sum-rate pre-log of any TDMA
scheme over the MIMO fading MAC (1), and since the sum-
rate pre-log given in Remark 2 is a lower bound on the sum-
rate pre-log of the best TDMA scheme, it follows that the
sufcient conditions presented in Corollary 1 hold also for the
best TDMA scheme.
Corollary 1: Consider the MIMO fading MAC model (1).

The joint-transmission scheme described in Section II achieves
a larger sum-rate pre-log than any TDMA scheme if

L∗ >
min(nr, nt,1 + nt,2)(nt,1 + nt,2)

min(nr, nt,1 + nt,2) − min
(
nr, max(nt,1, nt,2)

) (33)

where we dene a/0 ! ∞ for every a > 0. Conversely, the
best TDMA scheme achieves a larger sum-rate pre-log than
the joint-transmission scheme if

L∗ <
min(nr, nt,1 + nt,2)(nt,1 + nt,2)

min(nr, nt,1 + nt,2) − min(nr, nt,1, nt,2)

− min(nt,1nr, nt,1
2, nt,2nr, nt,2

2)
min(nr, nt,1 + nt,2) − min(nr, nt,1, nt,2)

. (34)

Proof: Omitted.
Recall that L∗ is inversely proportional to the bandwidth of

the power spectral density fH(·), which in turn is inversely
proportional to the coherence time of the fading channel. We
thus see from Corollary 1 that the joint-transmission scheme
tends to be superior to TDMA when the coherence time of the
channel is large. In contrast, TDMA is superior to the joint-
transmission scheme when the coherence time of the channel
is small.

Intuitively, this can be explained by observing that, com-
pared to TDMA, the joint-transmission scheme uses the mul-
tiple antennas at the transmitters and at the receiver more
efciently, but requires more pilot symbols to estimate the
fading coefcients. Thus, when the coherence time is large,
the number of pilot symbols required to estimate the fading
is small, so the gain in capacity by using the antennas more
efciently dominates the loss incurred by requiring more pilot
symbols. On the other hand, when the coherence time is small,
the number of pilot symbols required to estimate the fading

is large and the loss in capacity incurred by requiring more
pilot symbols dominates the gain by using the antennas more
efciently.

We next evaluate (33) and (34) for some particular values
of nr, nt,1, and nt,2.

A. Receiver Employs Less Antennas Than Transmitters
Suppose that the number of receive antennas is smaller than

the number of transmit antennas, i.e., nr ≤ min(nt,1, nt,2).
Then, the right-hand sides (RHS) of (33) and (34) become
∞ and every nite L∗ satises (34). Thus, if the number
of receive antennas is smaller than the number of transmit
antennas, then, irrespective of L∗, TDMA is superior to the
joint-transmission scheme.

B. Receiver Employs More Antennas Than Transmitters
Suppose that the receiver employs more antennas than the

transmitters, i.e., nr ≥ nt,1 + nt,2, and suppose that nt,1 =
nt,2 = nt. Then, (33) and (34) become

L∗ > 4nt (35)

and
L∗ < 3nt. (36)

Thus, if L∗ is greater than 4nt, then the joint-transmission
scheme is superior to TDMA. In contrast, if L∗ is smaller
than 3nt, then TDMA is superior. This is illustrated in Fig. 4
for the case where nr = 2 and nt,1 = nt,2 = 1. Note that if L∗

is between 3nt and 4nt, then the joint-transmission scheme is
superior to the TDMA scheme presented in Section II, but it
is inferior to the coherent TDMA scheme (32).

C. A Case In Between
Suppose that nr ≤ nt,1 + nt,2 and nt,2 < nr ≤ nt,1. Then,

(33) becomes
L∗ > ∞ (37)

and (34) becomes

L∗ < nt,2 +
nrnt,1

nr − nt,2
. (38)

Thus, in this case the joint-transmission scheme is always
inferior to the coherent TDMA scheme (32), but it can be
superior to the TDMA scheme presented in Section II.

D. Typical Values of L∗

We briey discuss what values of L∗ may occur in practical
scenarios. To this end, we rst recall that L∗ is the largest
integer satisfying L∗ ≤ 1

2λD
, where λD is the bandwidth of

the spectral distribution density fH(·), which in turn can be
associated with the Doppler spread of the channel as

λD =
fm

Wc
(39)

where fm is the maximum Doppler shift and Wc is the
coherence bandwidth of the channel. Following the order
of magnitude computations of Etkin and Tse [3], we shall
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Fig. 4: Pre-log regions for a fading MAC with nr = 2 and nt,1 = nt,2 = 1 for different values of L∗. Depicted are the pre-log
region for the joint-transmission scheme as given in Theorem 1 (dashed line), the pre-log region of the TDMA scheme as
given in Remark 2 (solid line), and the pre-log region of the coherent TDMA scheme (32) (dotted line).

determine typical values of λD for indoor, urban, and rural
environments for carrier frequencies ranging from 800 MHz
to 5 GHz. For indoor environments, assuming mobile speeds
of 5 km/h, λD ranges from 2 · 10−7 to 10−5. For urban
environments, assuming the same mobile speeds, λD ranges
from 2 · 10−5 to 2 · 10−4, whereas for mobile speeds of 75
km/h, λD ranges from 2 · 10−4 to 0.004. Finally, for rural
environments and mobile speeds of 200 km/h, λD ranges from
0.007 to 0.05.

For indoor environments and mobile speeds of 5 km/h, we
thus have that L∗ is typically greater than 5 · 104. For urban
environments, L∗ is typically greater than 2.5 · 103 for mobile
speeds of 5 km/h and greater than 125 for mobile speeds of 75
km/h. For rural environments and mobile speeds of 200 km/h,
L∗ ranges typically from 10 to 71. Thus, for most practical
scenarios, L∗ is typically large. It therefore follows that, if
nr ≥ nt,1 + nt,2, (33) is satised unless nt,1 + nt,2 is very
large. For example, if the receiver employs more antennas than
the transmitters, and if nt,1 = nt,2 = nt, then L∗ > 4nt is
satised even for urban environments and mobile speeds of 75
km/h, as long as nt < 30. Only for rural environments and mo-
bile speeds of 200 km/h, this condition may not be satised for
a practical number of transmit antennas. Thus, if the number
of antennas at the receiver is sufciently large, then the joint-
transmission scheme is superior to TDMA in most practical
scenarios. On the other hand, if nr ≤ min(nt,1, nt,2), then
TDMA is always superior to the joint-transmission scheme,
irrespective of how large L∗ is. This suggests that one should
use more antennas at the receiver than at the transmitters.

V. PROOF OUTLINE

Since the codebook construction is symmetric, it sufces to
study the conditional probability of error, conditioned on the
event that the messages (m1, m2) = (1, 1) were transmitted.
Let E(m′

1, m′
2) denote the event that D(m′

1, m′
2) ≤ D(1, 1).

The error probability can be upper-bounded by

Pe ≤ Pr





⋃

(m′
1,m

′
2) (=(1,1)

E(m′
1, m

′
2)




 . (40)

This upper bound depends on the three error events (m′
1 &=

1, m′
2 = 1), (m′

1 = 1, m′
2 &= 1) and (m′

1 &= 1, m′
2 &= 1).

To prove Theorem 1, we analyse the generalised mutual in-
formation (GMI) for the channel model considered in Section
I and the transmission scheme in Section II. The GMI, denoted
by Igmi(SNR), species the highest information rate for which
the average probability of error, averaged over the ensemble
of i.i.d. Gaussian codebooks, tends to zero as the codeword
length n tends to innity (see [9]�–[11] and references therein).
In accordance with the above error events, we consider the
following three maximum achievable rates: Igmi

1 (SNR) and
Igmi
2 (SNR) specify the maximum transmission rate for user

1 and user 2, respectively, whereas Igmi
1+2(SNR) species the

maximum sum-rate.

Igmi
1 (SNR) �– Error Event (m′

1 &= 1, m′
2 = 1)

Let E(T )
s,k denote the estimation-error matrix in estimating

Hs,k, i.e., E(T )
s,k is composed of the entries E(T )

s,k (r, t) (7). Then,
the GMI corresponding to the event E(m′

1, 1), m′
1 &= 1 can be

evaluated as [10], [11]

Igmi
1 (SNR) = sup

θ≤0

(
θF (SNR) − κ1(θ, SNR)

)
(41)

where

F (SNR) =
nr(L − nt,1 − nt,2)

L

+
1
L

L−nt,1−nt,2∑

$=1

E

[
SNR

(∥∥∥E(T )
1,$

∥∥∥
2

F
+

∥∥∥E(T )
2,$

∥∥∥
2

F

)]
(42)

(with ‖ · ‖F denoting the Frobenius norm); and where
κ1(θ, SNR) is the conditional log moment-generating function



7

of the metric D(m′
1, 1) associated with m′

1 &= 1, conditioned
on the channel outputs and on the fading estimates, given by

κ1(θ, SNR) =
1
L

L−nt,1−nt,2∑

$=1

g1,$

− 1
L

L−nt,1−nt,2∑

$=1

E
[
log det

(
Inr − θ SNR Ĥ(T )

1,$ Ĥ†(T )
1,$

)]
(43)

where

g1,$ ! E

[
θ
(
Y$ −

√
SNR Ĥ(T )

2,$ X2,$

)†

×
(
Inr − θ SNR Ĥ(T )

1,$ Ĥ†(T )
1,$

)−1

×
(
Y$ −

√
SNR Ĥ(T )

2,$ X2,$

)]
. (44)

Following [12], it can be shown that for θ ≤ 0 we have
g1,$ ≤ 0. As observed in [1], the choice

θ = − 1
nr + nr (nt,1 + nt,2)SNR ε2T

(45)

yields a good lower bound at high SNR. Here

ε2T ! max
s,r,t,$

E

[∣∣∣E(T )
s,$ (r, t)

∣∣∣
2
]

. (46)

Substituting this choice to the RHS of (41), and applying
g1,$ ≤ 0 to upper-bound κ1(θ, SNR), we obtain

Igmi
1 (SNR)

≥ 1
L

L−nt,1−nt,2∑

$=1

E

[
log det

(
Inr+

+
SNR Ĥ(T )

1,$ Ĥ†(T )
1,$

nr + nr (nt,1 + nt,2)SNR ε2T

)]

− L − nt,1 − nt,2

L
. (47)

We continue by analysing the RHS of (47) in the limit
as the observation window T of the channel estimator tends
to innity. To this end, we note that, for L ≤ 1

2λD
, the

interpolation error in (46) tends to (14)

lim
T→∞

ε2T = ε2 = 1 −
∫ 1/2

−1/2

SNR(fH(λ))2

SNRfH(λ) + L
dλ. (48)

It follows that, irrespective of k, the estimate Ĥ(T )
1,k tends to H̄

in distribution as T tends to innity, so

Ĥ(T )
1,k Ĥ†(T )

1,k

nr + nr (nt,1 + nt,2)SNR ε2T
d→ H̄H̄†

nr + nr (nt,1 + nt,2)SNR ε2
(49)

where the entries of H̄ are i.i.d., circularly-symmetric, complex
Gaussian random variables with zero mean and variance 1−ε2.
Since the function A +→ det(I+A) is continuous and bounded

from below, we obtain from Portmanteau�’s lemma [13] that

lim
T→∞

Igmi
1 (SNR)

≥ L − nt,1 − nt,2

L

(
−1+

+ E

[
log det

(
Inr +

SNR H̄H̄†

nr + nr (nt,1 + nt,2)SNR ε2

)])
(50)

≥ L − nt,1 − nt,2

L
min(nr, nt,1)

[
log SNR

− log
(
nr + nr(nt,1 + nt,2)SNR ε2

)]

+
L − nt,1 − nt,2

L
Ψ (51)

where

Ψ !
{

E[log det H̄†H̄] − 1, nr ≥ nt,1

E[log det H̄H̄†] − 1, nr < nt,1.
(52)

Here the last inequality follows by lower-bounding
log det (I + A) ≥ log detA.

To compute the pre-log

ΠR∗
1

! lim
SNR→∞

Igmi
1 (SNR)
log SNR

(53)

we rst note that, by [14], Ψ is nite. We further note that

SNR ε2 =
∫ 1/2

−1/2

SNRfH(λ)L
SNRfH(λ) + L

dλ ≤ L (54)

which implies that log
(
nr + nr(nt,1 + nt,2)SNR ε2

)
is

bounded. Thus, computing the ratio of the RHS of (51) to
log SNR in the limit as the SNR tends to innity, we obtain
the lower bound

ΠR∗
1
≥ min(nr, nt,1)

(
1 − nt,1 + nt,2

L

)
, L ≤ 1

2λD
. (55)

The condition L ≤ 1/(2λD) is necessary since otherwise (14)
would not hold. This yields one boundary of the pre-log region
presented in Theorem 1.

Igmi
2 (SNR) �– Error Event (m′

1 = 1, m′
2 &= 1)

This follows from the proof for the error event (m′
1 &=

1, m′
2 = 1) by replacing user 1 by user 2. We thus have

ΠR∗
2
≥ min(nr, nt,2)

(
1 − nt,1 + nt,2

L

)
, L ≤ 1

2λD
(56)

yielding the second boundary of the pre-log region presented
in Theorem 1.

Igmi
1+2(SNR) �– Error Event (m′

1 &= 1, m′
2 &= 1)

As above, the GMI corresponding to the event E(m′
1, m′

2),
(m′

1 &= 1, m′
2 &= 1) can be evaluated as [10], [11]

Igmi
1+2(SNR) = sup

θ≤0

(
θF (SNR) − κ1,2(θ, SNR)

)
(57)

where F (SNR) is given in (42), and where κ1,2(θ, SNR), given
in (58) on the top of this page, is the conditional log moment-
generating function of the metric D(m′

1, m′
2) associated with
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κ1,2(θ, SNR) =
1
L

L−nt,1−nt,2∑

$=1

E

[
θY †

$

(
Inr − θSNR

(
Ĥ(T )

1,$ Ĥ†(T )
1,$ + Ĥ(T )

2,$ Ĥ†(T )
2,$

))−1
Y$

]

− 1
L

L−nt,1−nt,2∑

$=1

E

[
log det

(
Inr − θSNR

(
Ĥ(T )

1,$ Ĥ†(T )
1,$ + Ĥ(T )

2,$ Ĥ†(T )
2,$

))]
. (58)

m′
1 &= 1, m′

2 &= 1, conditioned on the channel outputs and on
the fading estimates.

The sum-rate Igmi
1+2(SNR) can be viewed as the GMI of

an nr × (nt,1 + nt,2)-dimensional MIMO channel with chan-
nel matrix (H1,k, H2,k). Noting that the channel estimator
produces the channel-estimate matrix

(
Ĥ(T )

1,k , Ĥ(T )
2,k

)
, it thus

follows from [1] that the pre-log

ΠR∗
1+2

! lim
SNR→∞

Igmi
1+2(SNR)
log SNR

(59)

is lower-bounded by

ΠR∗
1+2

≥ min (nr, nt,1 + nt,2)
(

1 − nt,1 + nt,2

L

)
(60)

for L ≤ 1/(2λD). This yields the third boundary of the pre-log
region presented in Theorem 1.

Combining (55), (56) and (60), and noting that the boundary
is maximised for L being the largest integer satisfying L ≤

1
2λD

, proves Theorem 1.
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