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Abstract—We revisit channel polarization for arbitrary dis-
crete memoryless channels. A closed-form expression is derived
to characterize the difference between the mutual information
of the original channel and the virtual channels after one step
of channel transformation when the input alphabet and the
operation used in the channel transformation form a monoid. We
then provide an alternative proof to the one given in [4] for the
channel polarization theorem for arbitrary DMCs when the input
alphabet set forms a group. The results reveal the connections
between channel polarization and zero-error capacity.

I. INTRODUCTION

Polar codes were proposed in [1] as a coding technique that
provably achieves the capacity of symmetric binary-input dis-
crete memoryless channels (B-DMCs) with low encoding and
decoding complexity. The analysis of the capacity-achieving
property of polar codes is based on the channel polarization
theorem, which is summarized as follows: Given a B-DMC,
virtual channels between the bits at the input of a linear
encoder and the channel output sequence are created, such that
the mutual information in each of these channels converges to
either zero or one as the block length tends to infinity; the
proportion of virtual channels with mutual information close
to one converges to the capacity of the original channel. Polar
codes, constructed based on this principle, can achieve the
channel capacity under successive cancellation (SC) decoding.

In the celebrated work of Arıkan [1], the channel po-
larization theorem is proved only for B-DMCs. Later, it
was generalized to prime-input discrete memoryless channels
(DMCs) in [9], to prime power-input DMCs in [5], [6] and to
arbitrary DMCs in [2]–[4], [7], [8], [10]. The proofs in [5]–
[8], [10] all follow Arıkan’s proof technique, which is based
on the properties of the Battacharyya parameter and mutual
information of virtual channels. In [9], the channel polarization
theorem for prime-input DMCs is proved without considering
the Battacharyya parameter. Instead, the proof is based on
the entropy inequality of virtual channels, i.e., the mutual
information of the virtual channels is strictly different from
that of the original channel. As an extension of [9], the channel
polarization theorem is proved in [4] for arbitrary DMCs with
input alphabet set forming a quasigroup.
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In this paper, we revisit the channel polarization problem
for arbitrary DMCs. An alternative proof for the channel
polarization theorem for arbitrary DMCs is provided. Similarly
to [4], our approach does not consider the Battacharyya
parameter. There are two main differences between our proof
technique and the one proposed in [4]. First, while [4] proves
the entropy inequality of virtual channels by lower bounding
the mutual information difference between the original and the
“worse” virtual channel, we consider the difference between
the “better” virtual channel and the original channel, for
which a simple expression is given and bounded away from
zero when the input alphabet and the operation used in the
channel transformation forms a monoid. Though these two
ideas might seem similar, this leads to a new approach for
proving the strict inequality. Second, our approach makes use
of the properties of Markov chains and the zero-error capacity,
without involving distances between probability distributions.
Moreover, we show that the extremal channels to which the
virtual channels converge have a zero-error capacity equal to
their capacity. We note that our proof of channel polarization
theorem is restricted to group operations for now, while the
stronger results in [4] apply to the wider class of quasigroups.

II. PRELIMINARIES

Throughout this paper, we consider the basic channel trans-
formation described in Fig. 1, where W : X → Y is a DMC
with input alphabet set X = {0, . . . , q − 1}, output alphabet
set Y , and ⊕ is a binary operation on the set X . Assume that
for all y ∈ Y there exists x ∈ X such that W (y|x) > 0,
and for all x ∈ X there exists y ∈ Y such that W (y|x) > 0.
Assume U1 and U2 are independent random variables with
uniform distribution taking values from the set X . According
to Fig. 1, we have

X1 = U1 ⊕ U2, (1)
X2 = U2. (2)

Let W− : X → Y2 be the virtual channel between U1

and Y1Y2, and W+ : X → Y2 × X be the virtual channel
between U2 and Y1Y2U1. W− and W+ are synthesized after
one channel transformation step (see Fig. 1). After n recursive
steps of channel transformation, we can synthesize 2n virtual
channels. We follow some notations used in [1] and let Wn be
a random variable that chooses equiprobably from all possible



2n virtual channels after nth step. Let In = I(Wn) be the
mutual information of Wn. Moreover, we define two random
processes {In;n > 0} and {Wn;n > 0}. It is proved in [1]
that {In;n > 0} is a bounded martingale for B-DMCs.
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Fig. 1. One step of channel transformation.

The following technical lemma will be used to prove
Lemma 4 and Theorem 2.

Lemma 1. For random variables X,Y, Z whose probabil-
ity distributions are supported over their respective alphabets
X ,Y,Z , if X—Y —Z and Y —X—Z form Markov chains,
then

∀x, y, z such that PXY (x, y) > 0, PZ|Y (z|y) = PZ|X(z|x).
(3)

Proof: See Section VI-A.
A consequence of Lemma 1 is that, for any y ∈ Y , PZ|X(z|x)
takes on the same value for all x such that PXY (xy) > 0.

We introduce some definitions that will be used throughout
this paper.

A. Zero-error capacity

In [11], Shannon introduced the concept of zero-error ca-
pacity.

Definition 1 The zero-error capacity of a noisy channel is
the supremum of all rates at which the information can be
transmitted with zero error probability.

Since the capacity of a channel is the supremum of all rates
at which the information can be transmitted with vanishing
error probability, the zero-error capacity of a channel is always
upper bounded by the capacity of this channel. We use C0(W )
to denote the zero-error capacity of a channel W . In this
paper, channels with zero zero-error capacity are of primary
interest. BECs with strictly positive erasure probability, BSCs
with strictly positive crossover probability and AWGN chan-
nels with strictly positive noise power are examples of such
channels.

Definition 2 Let C0 be the set of channels whose zero-error
capacity is positive. Let C∅ be the set of channels whose
capacity is zero. Let C∗0 = C0

⋃
C∅.

We claim the following lemma without proof, which is
summarized from the statements in [11].

Lemma 2. For a DMC W : X → Y , the following statements
are equivalent.

1) W /∈ C0.
2) ∀x1, x2 ∈ X ,

∑
y∈Y

W (y|x1)W (y|x2) > 0.

B. Basic algebraic structures

We introduce some basic algebraic structures that will be
considered in this paper.

Definition 3 Suppose X is a set and an operation ⊕ is defined
overX . (X ;⊕) forms a monoid if it satisfies the following three
axioms.

1) ∀x1, x2 ∈ X , x1 ⊕ x2 ∈ X .
2) ∀x1, x2, x3 ∈ X , (x1 ⊕ x2)⊕ x3 = x1 ⊕ (x2 ⊕ x3).
3) There exists an element x0 in X such that for every

element x ∈ X , x⊕x0 = x0⊕x = x. x0 is also referred
as the neutral element of (X ;⊕).

In short, a monoid is a single operation algebraic structure sat-
isfying closure, associativity, and the existence of an identity
element.

Definition 4 A group is a monoid in which every element has
an inverse.

For example, the set of numbers {0, 1, · · · , q − 1} with
multiplication modulo q forms a monoid for all q, but only
forms a group for multiplication modulo q if q is prime and
0 is removed from the set.

Definition 5 Let (X ;⊕) by any algebraic structure and Xs be
a proper subset of X . If (Xs;⊕) forms a group, we call (Xs;⊕)
a subgroup of (X ;⊕) and denote this relation by (Xs;⊕) 6
(X ;⊕).

Note that our definition allows for a monoid to have a
subgroup.

Definition 6 Given (Xs;⊕) 6 (X ;⊕), for any x ∈ X , x ⊕
Xs = {x ⊕ x′ | ∀x′ ∈ Xs} is called the left coset of Xs in X
with respect to x, and Xs ⊕ x = {x′ ⊕ x | ∀x′ ∈ Xs} is called
the right coset of Xs in X with respect to x.

According to Lagrange’s Theorem, the left cosets of a group’s
subgroup partition the group and they have the same cardi-
nality. The left cosets of a monoid’s subgroup partition the
monoid as well, but their cardinalities can be different.

III. ENTROPY INEQUALITIES FOR ARBITRARY DMCS

In this section, we will consider the scenario illustrated in
Fig. 1, where U1, U2, X1, X2 are defined over a finite set X ,
and the ⊕ operation is defined over X such that (X ;⊕) forms
a monoid.

We first derive a closed-form expression to characterize
the difference between the mutual information of the virtual
channels and the original channel after a step of channel
transformation.



Lemma 3. Given a DMC W : X → Y , we have

I(W+)− I(W ) = I(X1;Y1|U1Y2). (4)

Proof: See Section VI-B.
The rest of the paper is devoted to finding the sufficient and
necessary condition for I(X1;Y1|U1Y2) > 0. We first give a
sufficient condition.

Lemma 4. Given a DMC W : X → Y , if the channel W /∈ C∗0 ,
then we have

I(X1;Y1|U1Y2) > 0. (5)

Proof: See Section VI-C.
Note that Lemma 4 provides a sufficient but not necessary

condition for I(X1;Y1|U1Y2) > 0. Based on Lemma 4,
we manage to find a sufficient and necessary condition for
I(X1;Y1|U1Y2) > 0, which will be stated in Theorem 2.

Lemma 5. Given a DMC W : X → Y , we have

I(W−) + I(W+) 6 2I(W ). (6)

Proof: See Section VI-D.
The equality in Eq. (6) holds if (X ;⊕) forms a group. That

is, the channel transformation preserves the overall symmetric
mutual information when (X ;⊕) forms a group. Following
the same arguments in [1], the random process {In;n > 0} is
a bounded martingale when the equality in Eq. (6) holds. The
sufficient and necessary conditions for the equality in Eq. (6)
to hold are studied in [2].

Based on Lemma 3 and Lemma 4 together with Lemma 5,
we can prove the main result of the paper, which is the
following.

Theorem 1. For a DMC W : X → Y with W /∈ C∗0 ,

I(W )− I(W−) > 0, (7)

I(W+)− I(W ) > 0. (8)

The proof of Theorem 1 is straightforward. First, Eq. (8) is
a direct consequence of Lemma 4. Then, Eq. (7) is a direct
consequence of Eq. (8) and Lemma 5. Moreover, Lemma 4
will be used in the proof of Lemma 6 (see Section VI-E).
Theorem 1 generalizes the results in [9] where Eq. (7) and
Eq. (8) are proved for prime-input DMCs only. We will show
how Theorem 1 leads to a proof of channel polarization in the
next section.

In order to make arguments about entropy inequalities of
virtual channels for multiple channel transformation steps, we
investigate whether the virtual channels W− and W+ inherit
the zero zero-error capacity property of the original channel
W .

Lemma 6. Consider a DMC W : X → Y . If the channel W /∈
C∗0 and (X ;⊕) forms a group, then we have

W+ /∈ C∗0 , (9)
W− /∈ C∗0 . (10)

Moreover, if W /∈ C0 and (X ;⊕) only forms a monoid, we have

W+ /∈ C0, (11)
W− /∈ C0. (12)

Proof: See Section VI-E.

IV. CHANNEL POLARIZATION FOR ARBITRARY DMCS

In the previous section, we proved that the symmetric
mutual information of the virtual channels is strictly different
from that of the original channel after one step of channel
transformation. A natural step forward is to investigate whether
the symmetric mutual information of the virtual channels
converges asymptotically, and if so, the set of possible values
that it converges to.

A. Channel polarization over groups

We first consider the case when (X ;⊕) forms a group. Since
the random process {In;n > 0} is a bounded martingale and
In converges almost everywhere to a random variable I∞.
Then we have

E[|In+1 − In|]→ 0. (13)

Eq. (13) implies that for any W /∈ C∗0 , its corresponding virtual
channels will converge to channels in C∗0 asymptotically.

As for the set of channels the virtual channels will converge
to, we need to investigate the set of invariant channels under
channel transformation, i.e., channels with I(X1;Y1|U1Y2) =
0.

Definition 7 Let Cinv(X ) denote the the set of channels with
input alphabet set X and I(X1;Y1|U1Y2) = 0 after one step of
channel transformation.

It follows from Lemma 4 that Cinv(X ) ⊂ C∗0 . The following
theorem provides a necessary and sufficient condition for a
channel W to be in Cinv(X ).

Theorem 2. Given a DMC W : X → Y , a necessary and
sufficient condition for W ∈ Cinv(X ) is that both following
statements are fulfilled.

1) W : X → Y can be decomposed into t > 1 disjoint
subchannels Wi : Xi → Yi, with Xi ⊂ X and Yi ⊂ Y
and Wi ∈ C∅, i ∈ [t], and

2) ∃Xs ∈ {X1, · · · ,Xt} such that (Xs;⊕) 6 (X ;⊕) and
any Xi ∈ {X1, · · · ,Xt} is a left coset of Xs.

Moreover, if W ∈ Cinv , then

W− ∈ Cinv, (14)
W+ ∈ Cinv. (15)

Proof: See Section VI-F.



Theorem 2 implies that the set Cinv is a set of sum channels of
which every component channel has zero capacity. Moreover,
∀W ∈ Cinv , the zero-error capacity of channel W equals to
its capacity. The logic behind this is as follows: ∀W ∈ Cinv ,

we have C0(W ) 6 C(W ), C(W ) = log(
t∑

i=1

2C(Wi)) = log t

and C0(W ) > log t = C(W ). Thus we can conclude that
∀W ∈ Cinv , C0(W ) = C(W ). With Eq. (13), Theorem 1, and
Theorem 2, we can conclude that successive transformations
of channels with zero-error capacity equals to zero will give
rise to channels converging towards a set of channels Cinv(X )
asymptotically. Moreover, given a channel W whose capacity
is larger than its zero-error capacity, successive channel trans-
formations will give rise to channels converging towards a set
of channels whose zero-error capacity equals to their capacity.

Now we investigate the limit random variable I∞. Let
W∞ denote the limit random variable of the random process
{Wn;n > 0} as defined previously.

Theorem 3. Given a DMC W : X → Y , W∞
takes values in the set Cinv(X ) and I∞ takes values in{
log |X ||Xs| | ∀(Xs;⊕) 6 (X ;⊕)

}
.

For example, given a channel W : X → Y with |X | = 6,
I∞ takes values in {log 1, log 2, log 3, log 6}. Theorem 3 is a
direct consequence of Theorem 2, so we skip the proof.

B. Channel polarization over monoids

We now briefly discuss channels whose input alphabet set
together with ⊕ forms a monoid only (not a group). The proof
of Theorem 1 is still valid, but the equality in Eq. (6) may
not be achieved. A consequence of this is that the random
process In is no longer a martingale, but a supermartingale
instead. Moreover, I(W+) − I(W ) = I(X1;Y1|U1Y2) = 0
does not necessarily imply that I(W−)− I(W ) = 0. Instead,
I(W−)− I(W ) = 0 if W ∈ C∅. The possible values of W∞
and I∞ are not known. Intuitively, we would guess that W∞
takes values in C∅ and I∞ = 0.

V. CONCLUSION AND DISCUSSIONS

In this paper, we have generalized the channel polarization
theorem to arbitrary DMCs, using the entropy-based proof
proposed in [9]. Furthermore, we have investigated the class
of channels that are invariant under channel transformations,
which are thus the channels the virtual channels converge to
asymptotically. We also revealed some connections between
the channel polarization phenomenon and the zero-error ca-
pacity. Finally, we discussed channel polarization for channels
whose input alphabet set is not a group but only a monoid.

Our overall proof of polarization for arbitrary discrete mem-
oryless channels applies to group operations because we used
the existence of a neutral element in the proof of Lemma 4 and
the existence of an inverse in the proof of Theorem 2. We know
from [4] that an equivalent result holds for the larger class
of quasi-groups. Within the framework of our approach, this
would suggest that an alternative proof of Lemma 4 not using

the neutral element and an alternative proof of Theorem 2
using division instead of the inverse may be possible, but this
remains an open problem at this point.

VI. PROOFS

In this section, we provide proofs of lemmas and theorems
in Section II, Section III and Section IV.

A. Proof of Lemma 1

Since X—Y —Z and Y —X—Z both form Markov chains,
we have

PXZ|Y (xz|y) = PZ|Y (z|y)PX|Y Z(x|yz) (16)
= PZ|Y (z|y)PX|Y (x|y), (17)

and

PY Z|X(yz|x) = PY |X(y|x)PZ|XY (z|xy) (18)
= PY |X(y|x)PZ|X(z|x). (19)

If PXY (xy) > 0, then

PZ|XY (z|xy) = PZ|X(z|x) = PZ|Y (z|y). (20)

This completes the proof.

B. Proof of Lemma 3

According to the chain rule of entropy, we have

I(W+)− I(W ) = I(U2;Y1Y2U1)− I(U2;Y2) (21)
= H(U2|Y2)−H(U2|Y1Y2U1) (22)
= I(U2;Y1U1|Y2) (23)
= H(U1Y1|Y2)−H(U1Y1|U2Y2) (24)
= H(U1|Y2) +H(Y1|U1Y2)

−H(U1|U2Y2)−H(Y1|U1U2Y2) (25)
= H(Y1|U1Y2)−H(Y1|U1U2Y2) (26)
= H(Y1|U1Y2)−H(Y1|X1) (27)
= H(Y1|U1Y2)−H(Y1|X1U1Y2) (28)
= I(X1;Y1|U1Y2). (29)

In particular, Eq. (26) comes from the fact that H(U1|Y2) =
H(U1|U2Y2) = H(U1). Eq. (27) and Eq. (28) come from the
fact that Y1 — X1— (U1, Y2) forms a Markov chain. This
completes the proof.

C. Proof of Lemma 4

We prove by contradiction. Assume I(X1;Y1|U1Y2) = 0,
we will show that this will lead to a contradiction that W ∈ C∗0 .
By this assumption, we have that X1 — (U1, Y2) — Y1 forms
a Markov chain. By construction (see Fig. 1), (U1, Y2) — X1

— Y1 forms a Markov chain too. Hence, we are in the scenario
of Lemma 1.

If there exists u, y2 such that PX1|U1,Y2
(x|u, y2) > 0 for all

x ∈ X , then by Lemma 1, for any y, W (y|x) has the same
value for all x ∈ X and hence I(W ) = 0, which contradicts
the condition of the lemma. We can hence assume that, ∀u, y2,
the set Xu,y2 = {x ∈ X |PX1|U1,Y2

(x|u, y2) > 0} is a proper



subset of X . Consider the set X0,y0
for some y0 corresponding

to U1 = 0 and Y2 = y0, where 0 is the neutral element of the
monoid (X ;⊕). Examining Fig. 1 for U1 = 0, we observe that
X1 = X2 = U2, and hence the setup conditioned on U1 = 0
is equivalent to the setup in Fig. 2. From the figure, it is clear

Y1
W

X2 = X1

W
Y2

Fig. 2. Setup conditioned on U1 = 0.

that X0,y0
is non-empty, since otherwise it would contradict

the definition of a channel. Since X0,y0 is a non-empty proper
subset of X , its complement X c

0,y0
= X \X0,y0 is also a non-

empty proper subset of X . Let x0 and x1 be elements of X0,y0

and X c
0,y0

, respectively. By the definition of X0,y0
, we know

that W (y0|x0) > 0 and W (y0|x1) = 0. Pick any y1 such that
W (y1|x1) > 0. Let us assume for now that W (y1|x0) > 0 as
well. W (y1|x0) > 0 and W (y1|x1) > 0 imply

PX1Y2(x0, y1) > 0, and (30)
PX1Y2(x1, y1) > 0, (31)

respectively. Lemma 1 with Eq. (30) and Eq. (31) gives, for
any y,

PY1|X1
(y|x0) = PY1|X1

(y|x1), (32)

which is impossible by construction because W (y0|x0) > 0
and W (y0|x1) = 0. Hence, our assumption that W (y1|x0) > 0
leads to a contradiction, and we conclude that W (y1|x0) = 0.

Having shown that for any y1 ∈ Y such that W (y1|x1) > 0,
W (y1|x0) = 0, it follows that inputs x0 and x1 can be used to
transmit 1 bit with zero probability of error over the channel,
which contradicts the condition of the lemma. This completes
the proof.

D. Proof of Lemma 5
Now we prove that the overall mutual information will

be non-increasing after a step of channel transformation.
According to the chain rule of mutual information and entropy,
we have that

I(W−) + I(W+) = I(U1;Y1Y2) + I(U2;Y1Y2U1) (33)
= I(U1;Y1Y2) + I(U2;Y1Y2|U1) (34)
= I(U1U2;Y1Y2) (35)
= I(X1X2;Y1Y2) (36)
= H(Y1Y2)−H(Y1Y2|X1X2) (37)
= H(Y2) +H(Y1|Y2)

−H(Y1|X1)−H(Y2|X2) (38)
6 I(X2;Y2) +H(Y1)−H(Y1|X1) (39)
= 2I(W ). (40)

A sufficient but not necessary condition for the equality in
Eq. (39) to hold is that X1 and X2 is independent from each
other, e.g., (X ;⊕) forms a group. Studying the full range
of operations that yield equality in Eq. (39) is an interesting
problem that has been studied in [2].

E. Proof of Lemma 6
We will prove formulas W+ /∈ C∗0 and W− /∈ C∗0 when

(X ;⊕) forms a group. It will be clear in the proof that
formulas W+ /∈ C∗0 and W− /∈ C0 also hold when (X ;⊕)
forms a monoid.

We first prove W+ /∈ C∗0 . The transition probability of
channel

W+ : U2 → U1Y1Y2

is

W+(y1y2u1|u2) = PU1(u1)W (y1|u1 ⊕ u2)W (y2|u2). (41)

Then for any u2, u
′
2 ∈ X , we have∑

y1∈Y

∑
y2∈Y

∑
u1∈X

W+(y1y2u1|u2)W
+(y1y2u1|u′2) (42)

=
∑
y1∈Y

∑
y2∈Y

∑
u1∈X

(
(PU1

(u1))
2W (y2|u2)W (y2|u′2)

W (y1|u1 ⊕ u2)W (y1|u1 ⊕ u′2)) (43)

=


∑
y2∈Y

W (y2|u2)W (y2|u′2)︸ ︷︷ ︸
>0



∑
u1∈X

(PU1(u1))
2
∑
y1∈Y

W (y1|u1 ⊕ u2)W (y1|u1 ⊕ u′2)︸ ︷︷ ︸
>0


(44)

> 0. (45)

Eq. (45) along with Lemma 2 implies C0(W
+) = 0, that is

to say,
W+ /∈ C0. (46)

Moreover, since

I(W+) = I(U2;Y1Y2U1) (47)
= I(U2;Y2) + I(U2;Y1U1|Y2) (48)
> I(W ) (49)
> 0, (50)

we have
W+ /∈ C∅. (51)

Based on Eq. (46) and Eq. (51), we conclude that

W+ /∈ C∗0 , (52)

which completes the first part of the proof.
The transition probability of the channel

W− : U1 → Y1Y2

is

W−(y1y2|u1) =
∑
u2∈X

PU2
(u2)W (y1|u1 ⊕ u2)W (y2|u2).

(53)



Then for any u1, u
′
1 ∈ X , we have∑

y1∈Y

∑
y2∈Y

W−(y1y2|u1)W
−(y1y2|u′1) (54)

=
∑
y1∈Y

∑
y2∈Y

(∑
u2∈X

PU2(u2)W (y1|u1 ⊕ u2)W (y2|u2)

∑
u′
2∈X

PU2(u
′
2)W (y1|u′1 ⊕ u′2)W (y2|u′2)

 (55)

>
∑
y1∈Y

∑
y2∈Y

(PU2
(u2)W (y1|u1 ⊕ u2)W (y2|u2)

PU2
(u′2)W (y1|u′1 ⊕ u′2)W (y2|u′2)) (56)

= PU2
(u2)PU2

(u′2)
∑
y2∈Y

W (y2|u2)W (y2|u′2)︸ ︷︷ ︸
>0∑

y1∈Y
W (y1|u1 ⊕ u2)W (y1|u′1 ⊕ u′2)︸ ︷︷ ︸

>0

(57)

> 0, (58)

where Eq. (56) holds for any u2, u
′
2 ∈ X and this follows

from the fact that the summation of non-negative numbers is
larger or equal to any addend. Eq. (58) along with Lemma 2
implies that C0(W

−) = 0, that is to say,

W− /∈ C0. (59)

Next we prove W− /∈ C∅ if W /∈ C∅, i.e., I(W−) > 0
if I(W ) > 0. We will prove the equivalent proposition that
I(W−) = 0 implies I(W ) = 0. Consider the series of
equations, assuming I(W−) = 0, then

I(W+)− I(W ) =I(X1;Y1|U1Y2) (60)

=I(W )− I(W−) (61)
=I(W ). (62)

This leads to

I(X1;Y1|U1Y2) = I(X1;Y1), (63)
⇒H(Y1|U1Y2)−H(Y1|X1) = H(Y1)−H(Y1|X1), (64)
⇒H(Y1|U1Y2)−H(Y1) = 0, (65)
⇒I(Y1;U1Y2) = 0, (66)
⇒I(Y1;U1) + I(Y1;Y2|U1) = 0, (67)
⇒I(Y1;Y2|U1) = 0, (68)
⇒I(Y1;Y2|U1 = 0) = 0, (69)

where in the last step U1 is the neutral element of the group.
The second equality in Eq. (62) holds when (X ;⊕) forms a
group (see Lemma 5). The left-hand side of Eq. (64) comes
from the fact that Y1—X1—(U1, Y2) forms a Markov chain.
Eq. (68) comes from the non-negative property of mutual
information. We will look into the joint distribution of (Y1, Y2)
given U1 = 0. All following arguments are conditioned on
U1 = 0 and we omit this expression for simplicity. Since

U1 = 0, we let X = X1 = X2 = U2 be a uniform random
variable on X . Then the joint distribution satisfies

PY1Y2
(y1y2) =

∑
x

PY1Y2|X(y1y2|x)PX(x) (70)

=
∑
x

PY1|X(y1|x)PY2|X(y2|x)PX(x), (71)

and the marginal distributions satisfy

PY1
(y1)PY2

(y2) =

(∑
x

PY1|X(y1|x)PX(x)

)
(∑

x

PY2|X(y2|x)PX(x)

)
. (72)

Since I(Y1;Y2|U1 = 0) = 0, Y1 and Y2 are independent
(given U1 = 0). We have

PY1Y2(y1y2) = PY1(y1)PY2(y2), (73)

⇒
∑
x

PX(x)PY1|X(y1|x)PY2|X(y2|x)

=

(∑
x

PX(x)PY1|X(y1|x)

)(∑
x

PX(x)PY2|X(y2|x)

)
,

(74)

⇒1

q

∑
x

PY1|X(y1|x)PY2|X(y2|x)

=
1

q2

(∑
x

PY1|X(y1|x)

)(∑
x

PY2|X(y2|x)

)
, (75)

for all y1, y2 ∈ Y . Let y1 = y2 = y and note that PY1|X
and PY2|X are both the transition probability of the original
channel W , denoted by PY |X , we have

1

q

∑
x

(
PY |X(y|x)

)2
=

(
1

q

∑
x

PY |X(y|x)

)2

. (76)

According to Jensen’s inequality, the equality is achieved if
and only if all terms are equal, i.e., for each y ∈ Y ,

PY |X(y|x) = c ∀x ∈ X ,

where c is a constant depending on y. Thus for each y ∈ Y ,
PX|Y (x|y) = 1

q ,∀x ∈ X .
Then I(W ) must satisfy

I(W ) = H(X)−H(X|Y ) (77)

= log q −
∑
y

PY (y)H(X|Y = y) (78)

= log q − log q
∑
y

PY (y) (79)

= 0. (80)

We have shown that I(W−) = 0 implies I(W ) = 0,
equivalently, if W /∈ C∅,

W− /∈ C∅. (81)



Based on Eq. (59) and Eq. (81), we conclude that

W− /∈ C∗0 . (82)

Furthermore, we notice that in the proof of Eq. (46) and
Eq. (59), the inverse property of a group is not required. Thus
if W /∈ C0 and (X ;⊕) forms a monoid, we have

W− /∈ C0, (83)
W+ /∈ C0. (84)

This completes the proof.

F. Proof of Theorem 2

We first prove the necessary condition for W ∈ Cinv .
This is a stronger result than what has been proved in
Lemma 4. We follow the idea in the proof of Lemma 4. Let
Xu,y2 = {x ∈ X |PX1|U1,Y2

(x|u, y2) > 0} and Yu,y2 =
{y ∈ Y |PY1|U1,Y2

(y|u, y2) > 0}. Assume W ∈ Cinv , i.e.,
I(X1;Y1|U1Y2) = 0. According to the proof of Lemma 4, we
have following two cases.

Case 1: If ∃u, y2 such that Xu,y2
= X , then W ∈ C∅ (see the

proof of Lemma 4). Thus Conditions 1) and 2) are fulfilled.
Fig. 3 illustrates the channel described by this case, where lines
with the same color represent the same transition probability.

Fig. 3. A channel described by case 1.

Case 2 : If ∀u, y2, the set Xu,y2
is a proper subset of X .

Examining Fig. 1 for U1 = 0, where 0 is the neutral element
for (X ;⊕), we observe that X1 = X2 = U2, and hence the
setup conditioned on U1 = 0 is equivalent to the setup in
Fig. 2. Fig. 4 illustrates the channel described in this case. We
first prove Condition 1). According to the proof of Lemma 4,
we have that if x0 ∈ X0,y and x1 ∈ X c

0,y , then∑
y∈Y

W (y|x0)W (y|x1) = 0. (85)

We have

∀yi, yj ∈ Y,X0,yi
= X0,yj

or X0,yi
∩ X0,yj

= ∅. (86)

Fig. 4. A channel described by case 2.

This can be seen via a proof by contradiction. Assuming the
contrary, we can find x0 ∈ X0,yi

∩X0,yj
and x1 ∈ X0,yi

∩X c
0,yj

such that

W (y|x0) = W (y|x1), (87)∑
y∈Y

W (y|x0)W (y|x1) = 0. (88)

Eq. (87) comes from the assumption that x0, x1 ∈ X0,yi
. x0 ∈

X0,yj
, x1 /∈ X0,yj

together with Eq. (85) leads to Eq. (88).
Then we have ∑

y∈Y
W (y|x1)W (y|x1) = 0, (89)

which conflicts with the definition of a channel. Thus, the
assumption cannot be true. It follows that X can be partitioned
into t disjoint subsets {X1, . . . ,Xt}. Let Yi = {y ∈ Y |X0y =
Xi}. It is easy to show that ∀x ∈ Xi, y ∈ Yi, W (y|x) = cy >
0 is constant with respect to x. Furthermore, if x ∈ X c

i , y ∈ Yi
or x ∈ Xi, y ∈ Yc

i , then W (y|x) = 0. Thus, the channel
W : X → Y can be decomposed into t disjoint subchannels
Wi : Xi → Yi, i ∈ [t] and Wi ∈ C∅.

Next we prove Condition 2). Assume that Xs ∈
{X1, . . . ,Xt} contains the neutral element 0, then 0 ∈ X0,ys

,
for all ys ∈ Ys. Notice that for all x1, x2 ∈ X0,y, y ∈ Y ,
Xx1,y = Xx2,y since they share the common element x1⊕x2.
We have ∀x1, x2 ∈ X0ys = Xs, x1 ⊕ x2 ∈ Xx1,ys = Xx2,ys =
Xs. Thus, Xs is closed under ⊕. Notice that ∀x ∈ Xs,
0 ∈ Xx,ys

= x⊕Xs, thus ∃x′ ∈ Xs such that x⊕x′ = 0. This
means that every x ∈ Xs has an inverse element x′ ∈ Xs. So
we have (Xs;⊕) 6 (X ;⊕). Moreover, we note that ∀x ∈ X ,
∃i ∈ [t] such that x ⊕ Xs ⊂ Xi. Since the left cosets of
a subgroup in a group partitions the group and the subsets
{X1, . . . ,Xt} partition X , we must have x ⊕ Xs = Xi.
Otherwise, there exists i, j ∈ [t] such that Xi ∩Xj 6= ∅. Thus,
we can conclude that the left cosets of Xs are {X1, . . . ,Xt}.

Now we prove the sufficiency part. If W fulfills both



conditions, we have

I(X1;Y1|U1Y2) (90)
= H(X1|U1Y2)−H(X1|U1Y1Y2) (91)

=
∑
u1∈X

∑
y2∈Y

PU1Y2
(u1y2)H(X1|u1y2)

−
∑
u1∈X

∑
y1∈Y

∑
y2∈Y

PU1Y1Y2(u1y1y2)H(X1|u1y1y2) (92)

= log |Xs| − log |Xs| (93)
= 0, (94)

where (Xs;⊕) 6 (X ;⊕). Since any Xi ∈ {X1, . . . ,Xt} is a
left coset of Xs, we have |Xi| = |Xs|. Eq. (93) follows from
the fact that H(X1|u1y2) = log |Xs| and H(X1|u1y1y2) =
log |Xs|.

Furthermore, if W ∈ Cinv , it is easy to verify that both W−

and W+ can also be decomposed into t disjoint subchannels
whose capacity is 0 and the input alphabet set X has the same
partition as W , i.e.,

W− ∈ Cinv, (95)

W+ ∈ Cinv. (96)

This completes the proof.
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