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Abstract—This paper presents an achievable second-order
rate region for the discrete memoryless multiple-access channel.
The result is obtained using a random-coding ensemble in which
each user’s codebook contains codewords of a fixed composition.
It is shown that this ensemble performs at least as well as i.i.d.
random coding in terms of second-order asymptotics, and an
example is given where a strict improvement is observed.

I. INTRODUCTION

Shannon’s channel capacity describes the largest possi-
ble rate of transmission with vanishing error probability in
coded communication systems. Further characterizations of
the system performance are given by error exponents [1,
Ch. 9], moderate deviations results [2], and second-order
coding rates [3]. The latter has regained significant attention
in recent years, and is well-understood for a variety of single-
user channels [3]–[5]. For discrete memoryless channels,
the maximum number of codewords M∗(n, ε) of length n
yielding an error probability not exceeding ε satisfies [3]

logM∗(n, ε) = nC −
√
nV Q−1(ε) + o(

√
n), (1)

where C is the channel capacity, Q−1(·) is the inverse of
the Q-function, and V is known as the channel dispersion.
From (1), we see that a higher dispersion V implies a larger
backoff from capacity for a fixed ε < 1

2 , at least in terms of
second-order asymptotics.

In this paper, we study the second-order asymptotics of
coding rates for the discrete memoryless multiple-access
channel (DM-MAC). Achievability results for this problem
have previously been obtained using i.i.d. random coding
with a random time-sharing sequence [6], [7] and a deter-
ministic time-sharing sequence [8].

The main result of this paper is a new achievable second-
order rate region (see Definition 1) which is obtained using
constant-composition random coding [1, Ch. 9]. We demon-
strate an improvement over the achievability results of [6]–
[8] even after the optimization of the input distributions.
We can think of the improvement of constant-composition
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codes as being analogous to a similar gain for random-
coding error exponents for the MAC [9]. A key tool in our
analysis is a Berry-Esseen theorem associated with a variant
of Hoeffding’s combinatorial central limit theorem (CLT)
[10].

A. Notation

Given a distribution Q(x) and a conditional distribution
W (y|x), the joint distribution Q(x)W (y|x) is denoted by
Q×W . The set of all empirical distributions (i.e. types [11,
Ch. 2]) on Xn is denoted by Pn(X ). The set of all sequences
of length n with a given type PX is denoted by Tn(PX).
Given a sequence x ∈ Tn(PX) and a conditional distribution
PY |X , we define Tnx (PY |X) to be the set of sequences y such
that (x,y) ∈ Tn(PX × PY |X).

Bold symbols are used for vectors and matrices (e.g. x),
and the corresponding i-th entry of a vector is denoted with
a subscript (e.g. xi). The vectors of all zeros and all ones are
denoted by 0 and 1 respectively, and the k×k identity matrix
is denoted by Ik×k. The symbols ≺, �, etc. denote element-
wise inequalities for vectors, and inequalities on the positive
semidefinite cone for matrices (e.g. V � 0 means V is
positive definite). The multivariate Gaussian distribution with
mean µ and covariance matrix Σ is denoted by N(µ,Σ).

We denote the cross-covariance of two random vectors by
Cov[Z1,Z2] = E

[
(Z1 − E[Z1])(Z2 − E[Z2])

T
]
, and we

write Cov[Z] in place of Cov[Z,Z]. Logarithms have base
e, and all rates are in nats except in the examples, where bits
are used. We denote the indicator function by 11{·}.

For two sequences fn and gn, we write fn = O(gn) if
|fn| ≤ c|gn| for some c and sufficiently large n, and fn =
o(gn) if limn→∞

fn
gn

= 0. A vector or matrix is said to be
O(fn) if all of its entries are O(fn) in the scalar sense.

B. System Setup

We consider a 2-user DM-MAC W (y|x1, x2) with input
alphabets X1 and X2 and output alphabet Y . The encoders
and decoder operate as follows. Encoder ν = 1, 2 takes as
input a message mν equiprobable on the set {1, . . . ,Mν},
and transmits the corresponding codeword x(mν)

ν from the
codebook Cν = {x(1)

ν , . . . ,x
(Mν)
ν }. Upon receiving y at

the output of the channel, the decoder forms an estimate
(m̂1, m̂2) of the messages. An error is said to have occurred



if the estimate (m̂1, m̂2) differs from (m1,m2). A rate
pair (R1, R2) is said to be (n, ε)-achievable if there exist
codebooks with M1 ≥ exp(nR1) and M2 ≥ exp(nR2)
codewords of length n for users 1 and 2 respectively such
that the average error probability does not exceed ε.

We consider constant-composition random coding, as con-
sidered by Liu and Hughes [9], among others. We fix a
time-sharing alphabet U , as well as the input distributions
QU (u), Q1(x1|u) and Q2(x2|u). We let QU,n, Q1,n and Q2,n

denote (conditional) types which are closest to QU , Q1 and
Q2 respectively in terms of L∞ norm. We fix an arbitrary
time-sharing sequence u with type QU,n and generate the
Mν

4
= enRν codewords of user ν = 1, 2 independently

according to the uniform distribution on Tnu (Qν,n),

PXν |U (xν |u) =
1

|Tnu (Qν,n)|
11
{
xν ∈ Tnu (Qν,n)

}
. (2)

Throughout the paper, we define the joint distribution

PUX1X2Y (u, x1, x2, y)
4
= QU (u)Q1(x1|u)Q2(x2|u)W (y|x1, x2) (3)

and denote the induced marginal distributions by PY |X1U ,
PY |X2U , etc. Furthermore, we define the rate vector

R
4
=

 R1

R2

R1 +R2

 (4)

and the information density vector

i(u, x1, x2, y)
4
=

 i1(u, x1, x2, y)
i2(u, x1, x2, y)
i12(u, x1, x2, y)

 , (5)

where

i1(u, x1, x2, y)
4
= log

W (y|x1, x2)
PY |X2U (y|x2, u)

(6)

i2(u, x1, x2, y)
4
= log

W (y|x1, x2)
PY |X1U (y|x1, u)

(7)

i12(u, x1, x2, y)
4
= log

W (y|x1, x2)
PY |U (y|u)

. (8)

The averages of (6)–(8) with respect to PUX1X2Y are re-
spectively given by I(X1;Y |X2, U), I(X2;Y |X1, U) and
I(X1, X2;Y |U).

C. Existing Results

We define the set

Qinv(V , ε)
4
=
{
z ∈ R3 : P

[
Z � z] ≥ 1− ε

}
, (9)

where Z ∼ N(0,V ). Since the existing results on second-
order asymptotics (and the one given in this paper) are written
in a similar form in terms of a matrix, a vector, and the set
Qinv, we define the following notion of achievability.

Definition 1. Let I be a 3 × 1 non-negative vector, and let
V be a 3×3 positive semidefinite matrix. The pair (I,V ) is

said to be second-order achievable if, for all ε ∈ (0, 1), there
exists a sequence g(n) = o(

√
n) such that all pairs (R1, R2)

satisfying

nR ∈ nI −
√
nQinv(V , ε) + g(n)1, (10)

are (n, ε)-achievable, where R is defined in (4).

Asymptotic expansions of the form (10) are somewhat
more difficult to interpret than the scalar counterpart in (1)
(e.g. see Haim et al. [12] for discussion). Roughly speaking,
given a vector I and two covariance matrices V 1 and V 2,
V 1 ≺ V 2 implies that V 1 yields faster convergence to the
pentagonal achievable rate region corresponding to I as n
increases with ε < 1

2 fixed, at least in terms of second-order
asymptotics.

The first study of the problem under consideration was
by Tan and Kosut [6], who used i.i.d. random coding to
prove that (I,V ) with I = E[i(U,X1, X2, Y )] and V =
Cov[i(U,X1, X2, Y )] is second-order achievable for any
choice of U and (QU , Q1, Q2). MolavianJazi and Laneman
[7] obtained second-order asymptotic results by treating the
three error events separately rather than jointly, and using
just three variance terms instead of a full 3 × 3 covariance
matrix. Huang and Moulin [8] showed that the covariance
matrix can be improved to

V iid = E
[
Cov

[
i(U,X1, X2, Y )

∣∣U]] (11)

by fixing a constant-composition time-sharing sequence u,
rather than generating one at random. This result improves on
that of [6] due to the fact that conditioning reduces variance.

For certain classes of channels, the present problem can
be reduced to a single-user problem in order to obtain a
matching converse to the above achievability results [12].
A more general converse containing variances of the form
E[Var[iν(U,X1, X2, Y ) |U,X1, X2]] (ν = 1, 2, 12) has re-
cently been reported by Moulin [13], [14].

II. MAIN RESULT

The main result of this paper is the following theorem.
Along with (5)–(8), we define the vectors

i(1)(u, x1)
4
= E

[
i(U,X1, X2, Y )

∣∣ (U,X1) = (u, x1)
]

(12)

i(2)(u, x2)
4
= E

[
i(U,X1, X2, Y )

∣∣ (U,X2) = (u, x2)
]

(13)

whose entries are given by

i(1)ν (u, x1)
4
= E

[
iν(U,X1, X2, Y )

∣∣ (U,X1) = (u, x1)
]

(14)

i(2)ν (u, x2)
4
= E

[
iν(U,X1, X2, Y )

∣∣ (U,X2) = (u, x2)
]

(15)

for ν = 1, 2, 12.



Theorem 1. Fix any finite time-sharing alphabet U and input
distributions (QU , Q1, Q2). The pair (I,V ) is second-order
achievable, where

I = E
[
i(U,X1, X2, Y )

]
(16)

V = E
[
Cov

[
i(U,X1, X2, Y )

∣∣U]
− Cov

[
i(1)(U,X1)

∣∣U]− Cov
[
i(2)(U,X2)

∣∣U]]. (17)

Furthermore, the function g(n) in (10) satisfies g(n) =
O(log n) if the argument to the expectation in (17) has full
rank for all u ∈ U , and g(n) = O(n

1
6 ) more generally.

Proof: See Section IV.
The covariance matrix V in (17) can be interpreted

as follows. The term Cov[i] represents the variations in
(X1, X2, Y ) in the i.i.d. case, and the terms Cov[i(1)] and
Cov[i(2)] represent the reduced variations in X1 and X2

respectively, resulting from the codewords having a fixed
composition. From (11) and (17), we clearly have V � V iid.

It is interesting to compare (17) with the conditional
covariance matrix

V joint = E
[
Cov

[
i(U,X1, X2, Y ),

∣∣U]
− Cov

[
i(12)(U,X1, X2)

∣∣U]] (18)

= E
[
Cov

[
i(U,X1, X2, Y )

∣∣U,X1, X2

]]
, (19)

where i(12)(U,X1, X2)
4
= E

[
i(U,X1, X2, Y ) |U,X1, X2

]
.

Roughly speaking, this is the covariance matrix which we
would obtain if the joint composition of (U,X1, X2) were
fixed, which is impossible in general in the absence of
cooperation. Based on this observation, we expect that
V joint � V . To show that this is true, we use the matrix
version of the law of total variance to write

Cov
[
i(12)(u,X1, X2)

]
= Cov

[
E
[
i(12)(u,X1, X2)

∣∣X1

]]
+ E

[
Cov

[
i(12)(u,X1, X2)

∣∣X1

]]
(20)

= Cov
[
i(1)(u,X1)

]
+ E

[
Cov

[
i(12)(u,X1, X2)

∣∣X1

]]
,

(21)

where each expression is implicitly conditioned on U = u.
The second term in (21) can be lower bounded (in the positive
semidefinite sense) by Cov[i(2)(u,X1)] by substituting the
definitions of expectation and covariance, and using the
identity E[ZZT ] � E[Z]E[Z]T . Combined with (17) and
(18), this yields the desired result.
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Figure 1. Capacity region of the collision channel.

III. EXAMPLE: THE COLLISION CHANNEL

In this section, we consider the channel with X1 = X2 =
{0, 1, 2}, Y = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), c} and

W (y|x1, x2) =


1 y = (x1, x2) and min{x1, x2} = 0

1 y = c and min{x1, x2} 6= 0

0 otherwise.
(22)

In words, if either user transmits a zero then the pair (x1, x2)
is received noiselessly, whereas if both users transmit a non-
zero symbol then the output is c, meaning “collision”.

We recall the following observations by Gallager [15]: (i)
The capacity region can be obtained without time sharing;1

(ii) By symmetry, the points on the boundary of the capacity
region are achieved using U = ∅ and input distributions of
the form Q1 = (1− 2p1, p1, p1) and Q2 = (1− 2p2, p2, p2);
(iii) The achievable rate region corresponding to any such
(Q1, Q2) pair is rectangular. To illustrate these observations,
we plot the capacity region in Figure 1, along with three
achievable rate regions corresponding to particular choices
of p1 and p2.

As n grows large, the second-order term in (10) be-
comes insignificant compared to the first-order term. Thus,
the second-order asymptotics are most relevant for input
distributions which are first-order optimal, in the sense that
they achieve a point on the boundary of the capacity region.
We proceed by showing that the diagonal entries of V are
strictly smaller than those of V iid in (11) under all such
input distributions. It suffices to consider the case U = ∅,
since otherwise the variances are simply weighted sums
of the corresponding variances under (Q1(·|u), Q2(·|u)),
weighted by QU . In fact, as stated above, it suffices to

1On the other hand, for the collision channel with K non-zero symbols,
time-sharing is required for K ≥ 8 [15].



consider distributions of the form Q1 = (1 − 2p1, p1, p1)
and Q2 = (1− 2p2, p2, p2).

Denote the diagonal entries of V by (V1, V2, V12), and
those of V iid by (V iid

1 , V iid
2 , V iid

12 ). We observe from (17)
and (11) that for ν = 1, 2, 12, Vν ≤ V iid

ν with equality if and
only if Var

[
i
(1)
ν (X1)

]
= 0 and Var

[
i
(2)
ν (X2)

]
= 0, where

the quantities i(1)ν and i
(2)
ν are defined as in (14)–(15) with

U = ∅. By a direct calculation, it can be shown that

i
(1)
12 (x1) = (1−2p2) log

1

1− 2p2
+2p2 log

1

p2
+log

1

Q1(x1)
,

(23)
which yields zero variance if and only if p1 = 1

3 (i.e. Q1 =

( 13 ,
1
3 ,

1
3 )). Similarly, i(2)12 (X2) has zero variance if and only

if p2 = 1
3 . However, we see from Figure 1 that p1 = p2 = 1

3

is not first-order optimal. A similar argument holds for i(1)1 ,
i
(2)
1 , i(1)2 and i

(2)
2 , except that the condition p1 = p2 = 1

3
is replaced by p1 = p2 = 0.2867. Once again, we see from
Figure 1 this choice is not first-order optimal. Thus, for ν =
1, 2, 12, we have Vν < V iid

ν for all first-order optimal input
distributions.

IV. PROOF OF THEOREM 1

For clarity of exposition, we present the proof in the
absence of time-sharing, and we assume that the input
distributions Q1 and Q2 are types (i.e. Qν ∈ Pn(Xν) for
ν = 1, 2), and that V has full rank and hence V � 0.
In Section IV-C, we provide some comments regarding the
general case. For ν = 1, 2, 12, we write iν(x1, x2, y) to
denote the quantities in (6)–(8) with the conditioning on u
removed, and similarly for i(x1, x2, y).

Using the notation of Section I-B with the time-sharing
sequence removed, we define the random variables

(X1,X2,Y ,X1,X2) ∼ PX1
(x1)PX2

(x2)

×Wn(y|x1,x2)PX1
(x1)PX2

(x2), (24)

where Wn(y|x1,x2)
4
=
∏n
i=1W (yi|x1,i, x2,i). We make use

of the threshold-based bound on the random-coding error
probability pe given in [16, Thm. 3], which is written in
terms of three arbitrary output distributions QY |X2

, QY |X1

and QY . Choosing these to be i.i.d. on the corresponding
marginals of (3) (e.g. PY |X2

), we obtain

pe ≤ 1− P
[
in(X1,X2,Y ) � γ

]
+
M1 − 1

2
P
[
in1 (X1,X2,Y ) > γ1

]
+
M2 − 1

2
P
[
in2 (X1,X2,Y ) > γ2

]
+

(M1 − 1)(M2 − 1)

2
P
[
in12(X1,X2,Y ) > γ12

]
,

(25)

where γ = [γ1 γ2 γ12]
T is arbitrary, and

in(x1,x2,y)
4
=

n∑
i=1

i(x1,i, x2,i, yi) (26)

inν (x1,x2,y)
4
=

n∑
i=1

iν(x1,i, x2,i, yi). (27)

For ν = 1, 2, we have from [17, Eq. (2.4)] that
the constant-composition codeword distribution PXν

(xν)

is upper bounded by a polynomial times Qnν (xν)
4
=∏n

i=1Qν(xν,i). Applying this upper bound to the second,
third and fourth terms in (25) and using an identical argument
to [7, Eqs. (5)-(6)], we obtain

pe ≤ 1− P
[
in(X1,X2,Y ) � γ

]
+ p0(n)

∑
ν=1,2,12

Mνe
−γν ,

(28)

where M12
4
=M1M2, and p0(n) is polynomial in n.

Using (28), the statement of the theorem will follow using
identical steps to [6, Thm. 2] once we prove the following:

1) The mean and covariance of in respectively sat-
isfy E[in(X1,X2,Y )] = nI + O

(
logn
n

)
and

Cov[in(X1,X2,Y )] = nV + O
(
logn√
n

)
, where (I,V )

are given by (16)–(17).
2) The probability on the right-hand side of (28) can be ap-

proximated using a multivariate Berry-Esseen theorem.
We prove these statements in Sections IV-A and IV-B respec-
tively. The remaining details of the proof of Theorem 1 are
omitted to avoid repetition with [6]. It should be noted that
the growth rates O

(
logn
n

)
and O

(
logn√
n

)
in the first statement

ensure that g(n) = O(log n) in (10), as stated in the theorem.

A. Calculation of Moments

The first moment of in (defined in (26)) is easily found
by writing

E
[
in(X1,X2,Y )

]
=

n∑
i=1

E
[
i(X1,i, X2,i, Yi)

]
= nI, (29)

where the last equality follows since, by symmetry, X1,i ∼
Q1 and X2,i ∼ Q2 for all i.

To compute the covariance matrix of in, we write

Cov
[
in(X1,X2,Y )

]
= Cov

[ n∑
i=1

i(X1,i, X2,i, Yi)

]
(30)

=

n∑
i=1

n∑
j=1

Cov
[
i(X1,i, X2,i, Yi), i(X1,j , X2,j , Yj)

]
(31)

= nCov
[
i(X1, X2, Y )

]
+ (n2 − n)Cov

[
i(X1, X2, Y ), i(X ′1, X

′
2, Y

′)
]
,

(32)



where (X1, X2, Y ) and (X ′1, X
′
2, Y

′) correspond to two
arbitrary but different indices in {1, · · · , n}. In (32), we
have used the fact that, by the symmetry of the codebook
construction, the n terms in (31) with i = j are equal, and
similarly for the n2 − n terms with i 6= j.

To compute the cross-covariance matrix in (32), we need
the joint distribution of (X1, X2, Y ) and (X ′1, X

′
2, Y

′). This
distribution is easily understood by considering each code-
word Xν as being generated by applying a random permuta-
tion to an arbitrary sequence xν with nQν(xν) elements of
each xν , i.e. xν ∈ Tn(Qν). Since such a random permutation
can be done via sampling without replacement, we have

P[Xν = xν ] = Qν(xν) (33)

P[X ′ν = x′ν |Xν = xν ] =
nQν(x

′
ν)− 11{xν = x′ν}
n− 1

(34)

for ν = 1, 2. Letting Q′ν(x
′
ν |xν) denote the right-hand side

of (34), the cross-covariance matrix in (32) is given by

Cov
[
i(X1, X2, Y ), i(X ′1, X

′
2, Y

′)
]

= E
[(
i(X1, X2, Y )− I

)(
i(X ′1, X

′
2, Y

′)− I
)T ]

(35)

=
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|x1, x2)

×
∑

x′
1,x

′
2,y

′

Q′1(x
′
1|x1)Q′2(x′2|x2)W (y′|x′1, x′2)

×
(
i(x1, x2, y)− I

)(
i(x′1, x

′
2, y
′)− I

)T
(36)

=M1 +M2 +M3 +M4, (37)

where the four terms in (37) correspond to the four terms
in the expansion of

(
nQ1(x

′
1) − 11{x1 = x′1}

)(
nQ2(x

′
2) −

11{x2 = x′2}
)

resulting from (34). Specifically, we obtain

M1 =
n2

(n− 1)2
E
[
i(X1, X2, Y )− I

]
E
[
i(X1, X2, Y )− I

]T
(38)

M2 =
−n

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Y )− I

)T ]
(39)

M3 =
−n

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Y )− I

)T ]
(40)

M4 =
1

(n− 1)2
E
[(
i(X1, X2, Y )− I

)(
i(X1, X2, Ỹ )− I

)T ]
(41)

under the joint distribution

(X1, X2, Y,X1, X2, Y , Y , Ỹ ) ∼
Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2)

×W (y|x1, x2)W (y|x1, x2)W (ỹ|x1, x2). (42)

We observe that M1 is the zero matrix, and M4 = O
(

1
n2

)
.

Furthermore, recalling the definitions of i(1) and i(2) in (14)–

(15), we have

−(n− 1)2

n
M2 = E

[
E
[(
i(X1, X2, Y )− I

) ∣∣∣X2

]
× E

[(
i(X1, X2, Y )− I

) ∣∣∣X2

]T]
(43)

= Cov
[
i(2)(X2)

]
. (44)

It follows that

M2 =
−n

(n− 1)2
Cov

[
i(2)(X2)

]
, (45)

and we similarly have

M3 =
−n

(n− 1)2
Cov

[
i(1)(X1)

]
. (46)

Using the identity n
(n−1)2 = 1

n+O
(

1
n2

)
and combining (32),

(37), (45) and (46), we obtain

Cov
[
in(X1,X2,Y )

]
= nV +O(1), (47)

where V is defined as in (17) with U = ∅.

B. A Combinatorial Berry-Esseen Theorem

Before stating the required Berry-Esseen theorem, we
outline some of the relevant literature. A combinatorial CLT
was given by Hoeffding [10], who proved the asymptotic
normality of random variables of the form

∑n
j=1 fn(j, π(j)),

where fn is a real-valued function taking arguments on
1, · · · , n, and π(·) is uniformly distributed on the set of
permutations of {1, · · · , n}. A Berry-Esseen theorem was
given by Bolthausen [18], and an extension to the multivariate
setting was given by Bolthausen and Götze [19].

A more general setting is that in which each fn(j1, j2)
is replaced by a random variable Zn(j1, j2), independent
of π(·), such that Zn(j1, j2) is independent of Zn(j′1, j

′
2)

whenever (j1, j2) 6= (j′1, j
′
2). Berry-Esseen theorems for this

setting were given by von Bahr [20] and Ho and Chen [21].
The analysis of each scalar quantity inν (X1,X2,Y ) (see (24)
and (27)) falls into this setting upon identifying

Zn(j1, j2) = iν
(
x1,j1 , x2,j2 , Yn(j1, j2)

)
, (48)

where x1 = (x1,1, · · · , x1,n) and x2 = (x2,1, · · · , x2,n)
are arbitrary sequences of type Q1 and Q2 respectively, and
Yn(j1, j2) ∼ W (·|x1,j1 , x2,j2). Under this choice, the per-
mutation π(·) applied to x2 induces the uniform distribution
on Tn(Q2), as desired. By symmetry, we can let x1 be an
arbitrary element of Tn(Q1) (e.g. see [10, Thm. 5]).

In our setting, each Zn(j1, j2) must be replaced by a
random vector Zn(j1, j2) in R3. The desired Berry-Esseen
theorem is a special case of a more general result by Loh [22,
Thm. 2] for a problem known as Latin hypercube sampling.
We define

Σn
4
=

1

n
Cov

[
in(X1,X2,Y )

]
(49)

Ŝn
4
= Σ

− 1
2

n

(
1√
n

(
in(X1,X2,Y )− nI

))
, (50)



where (·)− 1
2 denotes the inverse of the positive semidefinite

square root. From (47), we have Σn = V +O(n−1).

Theorem 2. (Corollary of [22, Thm. 2]) Let the input
distributions Q1 and Q2 be given, and consider the quantities
(X1,X2,Y ), (I,V ) and (Σn, Ŝn) respectively defined in
(24), (16)–(17) and (49)–(50). If V � 0, then we have for
sufficiently large n that∣∣∣P[Ŝn ∈ A]− P

[
Z ∈ A

]∣∣∣ ≤ K√
n

(51)

for any convex, Borel measurable set A ⊆ Rd, where Z ∼
N(0, I3×3), and K is a constant depending only on V and
the alphabet sizes |X1|, |X2| and |Y|.

Recovering Theorem 2 from [22, Thm. 2] is non-trivial,
and the details are omitted here for the sake of brevity. In
the more general setting of [22], the constant K is written in
terms of the third moment of a random variable. However,
in the present setting, this third moment can be uniformly
bounded in terms of the alphabet sizes [6, Appendix D].

C. General Case
In the case that Q1 and Q2 do not correspond to types of

length n, we can simply repeat the above derivation using
Q1,n and Q2,n, defined in Section I-B. In this case, each
type differs from its corresponding distribution by at most
O
(
1
n

)
in each entry, which does not affect the second-order

asymptotics.
In general, the dispersion matrix V may not have full rank,

in which case Theorem 2 does not directly apply. However,
we can deal with this case by reducing the problem to a
lower dimension, similarly to [6, Sec. VIII-A]. The argument
is slightly more involved in our setting, since nV is not
necessarily the exact covariance matrix of in(X1,X2,Y ),
due to the additional O(1) term in (47). By carefully handling
this remainder term, we obtain the same result with a third-
order term of g(n) = O(n

1
6 ), as stated in Theorem 1.

Finally, consider the case that U 6= ∅, and thus the
codewords are drawn uniformly over the conditional type
class Tu(Qν) for some u ∈ Tn(QU ). In this case, the pro-
cedure described in Section IV-A for generating a codeword
uniformly over the type class should be modified as follows.
Let x be an arbitrary element of the conditional type class
Tu(·). Instead of randomly permuting the entire sequence x,
a random permutation of the subsequence x(u) corresponding
to the indices where u equals u is applied independently for
each value of u ∈ U . Repeating the analysis of this section
with each such subsequence handled separately, we obtain
the more general result of Theorem 1.
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