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Abstract — We consider coded modulation schemes for the
automatic-repeat-request (ARQ) block-fading channel. We show
that the optimal SNR exponents of these schemes are given by a
modified form of the Singleton bound that includes the effects of
code rate and maximum ARQ delay. The role of maximum dis-
tance separable (MDS) codes over the ARQ block-fading channel
is investigated and simulation results are presented, demonstrat-
ing that practical MDS codes achieve the optimal SNR exponent
dictated by the Singleton bound.

I. INTRODUCTION

The block-fading channel is a relevant channel model for data
transmission over slowly-varying fading channels [1]. The du-
ration of a block-fading period is determined by the channel
coherence time. Within such a block-fading period, the fading
channel coefficient remains constant, while between periods
the channel coefficient change randomly according to a fad-
ing distribution. In this setting, transmission typically extends
over multiple block-fading periods. This is a reasonable model
for slow frequency hopping systems such as GSM, EDGE and
orthogonal frequency division multiplexing (OFDM) modu-
lation. Despite its simplicity, the model captures important
aspects of slow fading channels and proves useful to develop
coding design criteria.

In this paper, we consider an automatic-repeat-request
(ARQ) system signaling over a block fading channel with L
maximum allowable ARQ rounds and N fading blocks per
round. In contrast to the work [2], we constrain the transmitter
to fixed rate2 codes constructed over complex signal constel-
lations. The receiver is able to generate a finite number of
one-bit repeat-requests, subject to a latency constraint, when-
ever an error is detected in the decoded message. The main
focus of our work is to characterize the optimal diversity gain
(or signal-to-noise ratio (SNR) exponent), defined as [3, 4]

d , − lim
ρ→∞

Pe(ρ)
log ρ

, (1)

where ρ denotes the SNR and Pe(ρ) denotes the probability
that the transmitted message is decoded incorrectly, namely,
the frame error rate (FER). We also investigate the system
in terms of throughput and delay. We show that the optimal

1This work was supported by the Australian Research Council under ARC
Grants DP0558861 and RN0459498.

2Fixed rate codes operate at zero multiplexing gain (as defined in [3]).

SNR exponent of the system can be upper bounded by a mod-
ified form of the Singleton bound, and that maximum distance
separable (MDS) codes can achieve the Singleton bound over
the ARQ block-fading channel. Finally, we demonstrate that
while the optimal SNR exponent of the system is an increas-
ing function of the maximum number of allowed ARQ rounds
L, the throughput of the system becomes independent of L for
sufficiently high SNR. This result provides strong incentive
to use ARQ as a way to increase reliability without suffering
code rate penalties.

The effect of introducing modulation constraints on ARQ
systems has been recently investigated in [5]. The authors
present the Singleton bound as an upper bound to the SNR
exponent. The fundamental difference in our work is that we
prove the optimality of the Singleton bound applied to ARQ
systems. Further, we also demonstrate that asymptotically op-
timal throughput can be achieved by a class of codes that at-
tains the optimal SNR exponent, namely, the MDS codes.

The following notation is used in the paper. Vectors and ma-
trices are denoted by bold lower case and bold upper case let-
ters, respectively. Sets are denoted by calligraphic fonts with
the complement denoted by superscript c. The exponential
equality f(z) .= zd indicates that limz→∞

log f(z)
log z = d. The

exponential inequality
.≤,

.≥ are similarly defined. In denotes
the n × n identity matrix. Vector/matrix transpose is denoted
by ′ (e.g. v′) and ‖ · ‖F is the Frobenius norm.

II. SYSTEM MODEL

Consider a single-input single-output (SISO) ARQ system.
The transmission medium is modeled as a block-fading chan-
nel with coherence time denoted by T in terms of channel uses.
We investigate the use of a simple stop-and-wait ARQ proto-
col where the maximum number of ARQ rounds is denoted by
L. Each ARQ round consists of N independent block-fading
periods and thus each ARQ round spans NT channel uses.

The information sequence to be transmitted is passed
through an encoder with codebook C and code rate R0, where
R0 , R1

L and R1 , 1
NT log2 |C| is the code rate of the

first ARQ round. The rate R0 codeword is partitioned into a
sequence of LN coded vectors, denoted x`,n ∈ CT , where
n = 1 . . . N and ` = 1 . . . L. The transmitted codewords are
normalized in energy such that ∀x ∈ C, 1

LNT E[‖x‖2F ] = 1.



The received signal at the nth block and `th ARQ round is
written

y`,n =
√

ρh`,nx`,n + w`,n, (2)

where y`,n,w`,n ∈ CT and h`,n ∈ C denote the received vec-
tor, the noise vector and the channel fading gain, respectively,
and ρ denotes the average receive SNR. Both the channel fad-
ing gain h`,n and the elements of the noise vector w`,n are as-
sumed i.i.d. zero mean complex circularly symmetric complex
Gaussian with normalized variance σ2 = 0.5 per dimension.
The channel coefficients are assumed to be perfectly known to
the receiver.

Decoding begins following the reception of an ARQ round.
If the received codeword can be decoded, the receiver sends
back a one-bit acknowledgement signal to the transmitter via
a zero-delay and error-free feedback link. The transmission
of the current codeword ends immediately following the ac-
knowledgment signal and the transmission of the next message
in the queue starts. If an error is detected in the received code-
word before the Lth ARQ round, then the receiver requests
another ARQ round by issuing a one-bit negative acknowl-
edgment along the perfect feedback path. A decision is always
made at the end of the Lth ARQ round, regardless of whether
errors are detected.

In general, the optimal ARQ decoder makes use of all avail-
able coded blocks and corresponding channel state informa-
tion up to the current ARQ round in the decoding process. This
leads to the concept of information accumulation, where indi-
vidually incomplete data blocks are combined, along with any
other side information. We hence introduce the ARQ channel
model, completely analagous to (2), but allow for a more con-
cise notation. The received signal up to the `th ARQ round is
written

ỹ` =
√

ρH̃`x̃` + w̃`, (3)

where

ỹ` = [y′1,1, . . . ,y
′
1,N , . . . ,y′`,1, . . . ,y

′
`,N ]′,

x̃` = [x′1,1, . . . ,x
′
1,N , . . . ,x′`,1, . . . ,x

′
`,N ]′,

w̃` = [w′
1,1, . . . ,w

′
1,N , . . . ,w′

`,1, . . . ,w
′
`,N ]′,

H̃` = diag(h1,1IT , . . . , h1,NIT , . . . , h`,1IT , . . . , h`,NIT ).

That is, ỹ`, w̃` ∈ C`NT and x̃` ∈ C`NT are simply collections
of the received vectors, the code vectors and the noise vectors,
respectively, available at the end of the `th ARQ round, con-
catenated into block column vectors. The new channel ma-
trix H̃` ∈ C`NT×`NT is a diagonal matrix with the diagonal
entries composed of the respective channel state during each
block-fading period.

We will make use of the ARQ decoder proposed in [2],
which behaves as a typical set decoder for the first L − 1
ARQ rounds and finally performs ML decoding at the last
ARQ round. Let M = {1, 2, . . . , 2R0LNT } denote the set of
possible information sequences and let x(m) ∈ CLNT denote
the rate R0 codeword associated with message m. The decod-
ing function at ARQ round `, denoted ψ`(ỹ`, H̃`), outputs the
message index m̂ ∈ M whenever the received vector can be
decoded and ψ`(ỹ`, H̃`) = 0 whenever errors are detected.

III. ARQ THROUGHPUT AND LATENCY

To determine the average latency of the system, first let

A` ,





⋃

m̂ 6=0

ψ`(ỹ`, H̃`) = m̂



 , (4)

denote the event of decoding a valid message at ARQ round
`. Further, let q(`) , Pr(Ac

1, . . . ,Ac
`−1,A`) and p(`) ,

Pr(Ac
1, . . . ,Ac

`) denote the probability of a frame being ac-
cepted at the `th ARQ round and the probability of a frame
being rejected at the `th ARQ round, respectively. Then the
expected latency of the system κ, expressed as the average
transmitted ARQ rounds is given by

κ = 1 +
L−1∑

`=1

p(`). (5)

Note that κ is derived based on the assumption of a code and
decoder which is capable of outputting the correct message
whenever the channel is not in deep fade. Therefore κ behaves
as a lower bound for practical codes.

Next, we apply the renewal-reward theorem [6] to obtain
an expression for the transmit throughput η(R1, L), where the
transmit throughput is defined to be the average number of
information bits transmitted per channel use (note this implies
R0 ≤ η(R1, L) ≤ R1). We recognize {Ac

1, . . . ,Ac
`−1,A`},

` = 1, . . . , L as the recurrent events and associate a reward
of R1 with every recurrent event. Note that the probability
distribution of the recurrent event is given by q(`). Finally,
let the random time between two consecutive recurrent events
be denoted by S (inter-renewal time), where the probability
distribution of S is

Pr(S = s) =





q(s) 1 ≤ s ≤ L− 1
p(L− 1) s = L

0 otherwise
. (6)

The transmit throughput of the system is obtained by applying
the renewal-reward theorem to get [2]

η(R1, L) =
R1

1 +
∑L−1

`=1 p(`)
, (7)

where η(R1, L) is expressed in bits per channel use.

IV. RATE-DIVERSITY-DELAY TRADEOFF

At ARQ round `, let

IeG`
(x̃`; ỹ`) , 1

NT
I(x̃`; ỹ`|H̃` = G̃`) (8)

denote the normalized mutual information between the accu-
mulated received vector ỹ` and the coded blocks x̃`, given the
instantaneous channel state matrix G̃`. G̃` is a random matrix
and IeG`

(x̃`; ỹ`) is a non-negative random variable represent-
ing the instantaneous mutual information at ARQ round `.

Following [6, Lemma 1], we get that for |M| = 2R1NT ,
there exists a codebook C such that the conditional probability



of error Pe(ρ|H̃`) < ε for any ε > 0 whenever the instan-
taneous mutual information satisfies IeG`

(x̃`; ỹ`) ≥ R1 (for
any ` = 1, . . . , L), provided that the equivalent block length
NT is sufficiently large. We hence define information outage
as the event when the instantaneous mutual information drops
below R1 (i.e. IeG`

(x̃`; ỹ`) < R1). The corresponding outage
probability is then defined as

Pout(ρ, `, R1) , Pr
(
IeG`

(x̃`; ỹ`) < R1

)
. (9)

Further, we will refer to the channel as being in outage when-
ever the instantaneous channel state belongs to the outage re-
gion O` ,

{
G̃` ∈ C`NT×`NT : IeG`

(x̃`; ỹ`) < R1

}
.

We now present the main results of this paper concerning
the optimal SNR exponents of ARQ systems.

Theorem 1. Consider the channel model (3) with in-
put constellation satisfying the average power constraint

1
LNT E[‖x(m)‖2F ] ≤ 1. The optimal SNR exponent dG(N, L)
is given by

dG(N,L) = LN. (10)

Further, this is achieved at all positive code rates by Gaussian
random codes.

Proof. Theorem 1 follows immediately as a corollary of [3,
Theorem 2] after taking into account the introduction of N in
the system.

Theorem 1 states that Gaussian codes achieve maximal di-
versity gain for any positive rate. As we show in the following,
this is not the case with discrete signal constellations (PSK,
QAM). In particular, due to the discrete nature of these signal
sets, a tradeoff between rate and diversity arises.

Theorem 2. Consider the channel model (3) with discrete in-
put constellation X of cardinality 2Q satisfying the average
power constraint 1

LNT E[‖x(m)‖2F ] ≤ 1. The optimal SNR
exponent dD(R1, N, L,X ) is upper bounded by the modified
Singleton bound

dD(R1, N, L,X ) = 1 +
⌊
LN

(
1− R1

LQ

)⌋
. (11)

Further, (11) is achieved with random codes wherever (11) is
continuous, provided that the block length grows sufficiently
fast with SNR.

Proof (Sketch). We first prove the converse and show that the
diversity gain d ≤ dD(R1, N, L,X ). We can use Fano’s in-
equality to show that the outage probability Pout lower-bounds
the error probability Pe for a sufficiently large block length.
Then we bound the maximum SNR exponent by considering
the diversity gain of the outage probability. For large SNR,
the instantaneous mutual information is either zero or Q, cor-
responding to when the channel is in deep fade and when the
channel is not in deep fade, respectively [4]. Achievability is
proved by considering random codes coupled with the previ-
ously described ARQ decoder of [2], as well as the use of the

union Bhattacharyya bound. For finite T , we obtain similar
conditions to those in [4]. Finally, as T → ∞, we show that
the SNR exponent of random codes is given by the Singleton
bound.

The bound (11) is also applicable to any systems using
block codes over LN independent block-fading periods. The
significance of the ARQ framework is that it provides a way of
achieving the optimal SNR exponent attained by a block code
with LN coded blocks, without always having to transmit all
LN code blocks. Indeed, following [2], observe that

p(`) , Pr(Ac
1, . . . ,Ac

`)
≤ Pr(Ac

`)

= Pr(ψ`(ỹ`H̃`) = 0)
≤ Pout(ρ, `, R1) + ε
.= ρ−dD(R1,N,`,X ). (12)

On substitution of (12) into (7), we find

η(R1, L)
.≥ R1

1 +
∑L−1

`=1 ρ−dD(R1,N,`,X )

.= R1, (13)

which shows that the transmit throughput is asymptotically
equal to R1 (since R1 ≥ η(R1, L)), the rate of a single ARQ
round. In other words, provided the SNR is sufficiently high,
ARQ systems which send on average N coded blocks can
achieve the same diversity gain as that achieved by a block
code system which sends LN coded blocks every time. This is
because in the high SNR regime, most frames can be decoded
correctly with high probability based only on the first transmit-
ted code block. ARQ retransmissions are used to correct the
rare errors which occur almost exclusively whenever the chan-
nel is in outage. While the throughput η(R1, L) is a function
of L at mid to low SNR, it converges towards R1 independent
of L at sufficiently high SNR. Since the optimal diversity gain
is an increasing function of L, this behavior can be exploited
to increase reliability without suffering code rate losses. How-
ever, as noted in [2], this behavior is exhibited only by de-
coders capable of near perfect error detection (PED). There-
fore, the performance of practical error detection schemes can
be expected to significantly influence the throughput of ARQ
systems.

Examining the rate-diversity-delay tradeoff (11) in more
detail, first note that R1/LQ = R0/Q is the code rate of a
binary code. i.e. 0 ≤ R0/Q ≤ 1. The expression (11) implies
that the higher we set the target rate R1 (equivalently, R0), the
lower the achievable diversity order. In particular, uncoded
sequences (i.e. R1 = Q) achieve an optimal diversity gain
of 1 + bN(L − 1)c, while any code with non-zero R1 ≤ Q
(equivalently R0 ≤ Q/L) achieve optimal diversity less than
or equal to LN . This is an intuitively satisfying result as LN
is precisely the number of independent fading periods.

Figure 1-3 are graphs of the SISO tradeoff function with
varying Q, N and L plotted against the rate of a single ARQ
round R1. First we examine the effect of the constellation size
Q on the optimal diversity tradeoff function. Figure 1 shows



the tradeoff curve for three different values of Q. We can see
from the plot that the tradeoff curves for higher Q are strictly
better than lower Q in terms of achievable diversity gain. This
implies that a high-order modulation scheme always outper-
forms lower-order modulation schemes in the limit of high
SNR in terms of error rate performance, for any code rate.
Alternatively, a system with high Q can choose to operate at
higher code rates than a low Q system and still maintain the
same diversity gain.

Figure 2 shows the diversity tradeoff curve for different val-
ues of N . Similar to the previous tradeoff curve with constella-
tion size Q, we observe that systems with high values of N are
strictly better than systems with low N (in terms of diversity
gain). In addition, we notice that N corresponds to the num-
ber of “steps” in the tradeoff function of (11). Systems with
low values of N maintain the same diversity gain over wider
intervals of rates than systems with high N . Relatively, the
penalty for using codes with high spectral efficiency is much
higher for systems with large N (although these systems will
still achieve higher diversity gains than systems with low N ).

Figure 3 illustrates the effect of the maximum number of al-
lowed ARQ rounds L on the diversity of the system. It is clear
from the plot that the effect of L is to simply shift tradeoff
curves upwards. This is intuitively satisfying, since each addi-
tional ARQ round represents incremental redundancy, which
can be considered as a form of advanced repetition coding.
Each additional ARQ round contains N additional indepen-
dent fading blocks and hence the diversity gain is simply
dD(R1, N, L + 1,X ) = dD(R1, N, L,X ) + N .

Having established the main effects of each parameter in
(11), we now consider the practical coding aspects of Theo-
rem 2. The SISO diversity function (11) can be viewed as a
modified version of the Singleton bound [7] with the diver-
sity gain corresponding to the Hamming distance. The num-
ber of independent fading blocks corresponds to the new block
length while the constellation of the code can be thought of as
containing |X |T elements. The code rate is given by R0/Q.
This is a useful interpretation and naturally leads us to inves-
tigate the role of Singleton-bound-achieving MDS codes. The
role of MDS codes as block codes in block-fading channel has
been examined extensively in [4, 8]. In the following section,
we make use of the MDS convolutional codes presented in [8]
to illustrate the meaning of the diversity tradeoff curve in a
practical sense.

V. NUMERICAL RESULTS

Figure 4 illustrates the performance of two different ARQ
systems. The first system has maximum number of ARQ
rounds L = 2, N = 1 and code rate R0 = 1/2 with BPSK sig-
naling. The second system has maximum ARQ rounds L = 4,
N = 1, code rate R0 = 1/4 and also BPSK signaling. The
4-state [5, 7]8 convolutional code is used for the first ARQ sys-
tem and the 4-state [5, 5, 7, 7]8 convolutional code is used for
the second system. Both systems have T = 100. We apply
the list Viterbi decoder proposed in [9] to perform joint error
detection and decoding.
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Figure 1: Optimal diversity tradeoff curve corresponding to
L = 2, N = 4 for a SISO channel.
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Figure 2: Optimal diversity tradeoff curve corresponding to
L = 2, Q = 2 for a SISO channel.
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Figure 3: Optimal diversity tradeoff curve corresponding to
N = 6, Q = 2 for a SISO channel.



Consider the first system, the top three curves in figure 4
show the corresponding outage probability, FER with list de-
coding and FER with PED. The FER curves are parallel to the
outage curve at high SNR, which show that the convolutional
MDS codes indeed achieve the optimal diversity gain. The
second system corresponds to the bottom three curves of fig-
ure 4. Again, we see that the optimal diversity gain is achieved
by the MDS convolutional code.

Comparing the two ARQ systems, it is clear that significant
performance gains can be obtained at the expense of higher
delays. At FER of 10−2, the performance gain of the L = 4
system over the L = 2 system is already 5 dB. The perfor-
mance gap increases even more dramatically at higher SNR.

Figure 5 shows the average ARQ rounds of the two ARQ
systems considered above. For each system, we plot the av-
erage ARQ rounds with PED, and with the list decoder and
the lower bound (LB) given by (5), respectively. It is clear
from the plot that at medium to low SNR, significant loss in
throughput is incurred by codes that do not approach the out-
age probability limit, like convolutional code. Even more loss
in throughput is observed when list decoding is used as the
error detection mechanism.

Finally, note that the average ARQ round curves converge
towards one at high SNR. This agrees with (13) and shows that
regardless of the maximum number of allowed ARQ rounds
L, no spectral efficiency penalties are incurred at sufficiently
high SNR. In the limit of high SNR, the transmit throughput
η(R1, L) = R1.

VI. CONCLUSION

In this paper, we derived an expression for the optimal
ARQ SNR reliability function over the block-fading channel.
The discrete reliability function (11) characterizes the trade-
off between diversity gain, code rate, signal set and delay. We
showed that ARQ transmissions can significantly increase the
level of diversity in the system. Further, the additional di-
versity gain due to ARQ comes with no throughput or delay
penalty at high SNR. We recognize the optimal SNR reliability
function as the Singleton bound in a modified form which lead
us to investigate the class of MDS codes. Finally, we showed
via simulation that practical MDS codes can achieve the op-
timal SNR reliability function with low-complexity decoders
on the ARQ block-fading channel.
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