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Abstract—This paper shows that bit-interleaved coded modula-
tion (BICM) over the Gaussian channel can achieve information
rates larger than the so-called BICM capacity. For some labelings
the improvement with respect to the BICM capacity is significant,
especially at low and medium signal-to-noise ratios (SNR).
Specifically, natural binary labeling is found to be both first-
and second-order optimal at low SNR.

Index Terms—Bit-interleaved coded modulation, mismatched
decoding, Gaussian channel, LM rate.

I. INTRODUCTION AND SUMMARY

In recent years, the combination of very good performance
and simple implementation offered by bit-interleaved coded
modulation (BICM) has led to its widespread adoption as a de
facto standard in modern wireless and optical systems. Despite
this popularity, BICM remains somewhat poorly understood
from a fundamental theoretical perspective. In [1], Caire et
al. built an equivalent channel model for BICM around the
assumption of infinite interleaving and determined an achiev-
able rate for this model, a quantity often referred to as BICM
capacity. Later, Martinez et al. [2], [3] cast the operation of
BICM as an instance of mismatched decoding (i.e. a decoder
that does not operate according to the Maximum-Likelihood,
i.e. ML, criterion) and found that Caire’s BICM capacity coin-
cides with the so-called generalized mutual information (GMI)
of the BICM decoder, even for finite-length interleaving.

In general, mismatched decoders can reliably transmit in-
formation at rates above the GMI [4], [5], e.g. the LM rate
[4], [5]. In this paper, we study the LM rate for BICM over
the Gaussian channel and find that it generally exceeds the
GMI. For some labelings, the improvement with respect to
the BICM capacity is significant. Moreover, in the wideband
regime, i.e. at vanishing signal-to-noise ratio (SNR) [6], where
binary reflected Gray labeling is not first-order-optimal (FOO)
but natural binary labeling is, we find that the LM rate of
natural binary labeling is also second-order optimal (SOO).

II. CHANNEL MODEL AND NOTATION

At the encoder, a message is mapped onto a codeword
which we denote by x. A codeword is a sequence of N

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme under grant agreement 303633, by the Spanish Ministry of
Economy and Competitiveness under grants RYC-2011-08150 and TEC2012-
38800-C03-03, and by the Engineering and Physical Sciences Research
Council (EPSRC) project UNLOC (EP/J017582/1), United Kingdom.

symbols xk ∈ X , k = 1, . . . , N drawn from a constellation
X of cardinality 2m, where m denotes the number of bits per
symbol. Codewords are constructed as the serial concatenation
of a binary codeword of length n = mN , a bit-level interleaver
and a binary labeling function that takes consecutive blocks
of m bits and maps them to signal constellation symbols x,
such that xk is a function of (b(k−1)m+1, . . . , bkm). We label
each symbol by m bits, b1, . . . , bm, and let bi(x) denote the
i-th bit in the binary label of x, for i = 1, . . . ,m.

We consider transmission over the complex additive white
Gaussian noise (AWGN) channel. The input Xk belongs
to the alphabet X , which is assumed to have zero mean,
i.e.

∑
x 2−mx = 0, and unit average input energy, i.e.∑

x 2−m|x|2 = 1, under a uniform probability distribution
P (x) = 1

2m , x ∈ X . The k-th channel output Yk is given by

Yk =
√
snrXk + Zk k = 1, . . . , N, (1)

where snr is the average SNR and Zk is a sample of i.i.d.
circularly-symmetric complex Gaussian noise with zero mean
and unit variance. With this setup, the channel transition
probability density function W (y|x) is given by

W (y|x) =
1

π
e−|y−

√
snrx|2 . (2)

We define 2m sets X ib as the collection of symbols x
satisfying bi(x) = b. The labeling induces 2m different
conditional symbol distributions Pi(x|b) uniform in the set X ib .
We let X ib denote the respective mean of X ib under Pi(x|b).

Finally, we also define m bit distributions Pi(b) = 1
2 , b =

0, 1, and 2m possibly different channel transition probabilities
Wi(y|b) ,

∑
x Pi(x|b)W (y|x) =

∑
x∈X ib

2
2mW (y|x).

The BICM decoder chooses its estimate of the transmitted
codeword according to the following rule

x̂ = arg max
x

N∑
k=1

m∑
i=1

di(bi(xk), yk), (3)

where the i-th bit decoding metric di(b, y) is given by

di(b, y) = logWi(y|b). (4)

The defining feature of the BICM mismatched decoder is
that it treats the m bits in a symbol as if they were independent.
The corresponding symbol decoding metric d(x, y) is given by

d(x, y) =

m∑
i=1

di
(
bi(x), y

)
. (5)



As the BICM decoder makes its decision according to a metric
other than ML, we have an instance of mismatched decoding.
While the formulation in terms of decoding metric seems the
most natural for the purposes of this paper, it is possible
to present the decoder operation in terms of log-likelihood
ratios, as in [1]. To any extent, this decoder characterizes the
performance of BICM without requiring Caire’s assumption
of infinite interleaving [1] as observed in [2], [3].

III. ACHIEVABLE INFORMATION RATES

Achievable information rates are often determined by con-
sidering the ensemble performance of collections of random
independent identically distributed (i.i.d.) codewords [4], [5].
For instance, the GMI is the largest achievable rate when the
codeword symbols are randomly selected in an i.i.d. manner
according to a general distribution P , not necessarily uniform.
The general expression for the GMI is [4]

I0(snr) , sup
s≥0

E
[
log

esd(X,Y )

E[esd(X′,Y )|Y ]

]
, (6)

where we denote the GMI by I0(snr) to emphasize the
dependence on the SNR. The expectations E [·] are carried out
according to the distributions (X,Y ) ∼ P ×W and X ′ ∼ P .

The performance of the i.i.d. ensemble is weakened by the
codewords whose empirical distribution is very different from
the original distribution P . In contrast, considering codewords
whose empirical distribution coincides with P [4] leads to an
improved ensemble. In this case, the associated rate is the LM
rate, which we denote by I1(snr). This rate is given by

I1(snr) , sup
s≥0,a(·)

E
[
log

ea(X)esd(X,Y )∑
x′ P (x′)ea(x′)esd(x′,Y )

]
, (7)

where a(x) is a real-valued function with finite mean ā =
E[a(X)]. Recently, it has been observed that a(x) admits an
interpretation in terms of a pseudo-cost function [5], [7]. Con-
cretely, the LM rate can be achieved by choosing codewords
that satisfy a pseudo-cost constraint, Nā− δ < an(x) ≤ Nā,
where an(x) ,

∑N
k=1 a(xk) and the constant δ > 0 limits the

allowed codeword cost. Since the GMI can be recovered from
the LM rate by setting a(x) = 0 for all x ∈ X , we have that
I0(snr) ≤ I1(snr). In general, however, the LM rate is not the
largest achievable rate with mismatched decoding.

For BICM the supremum is attained in (6) at s = 1 [3]. With
independent and uniformly distributed bits, the GMI coincides
with the BICM capacity,

I0(snr) =

m∑
i=1

I(Bi;Y ) (8)

=

m∑
i=1

E
[
log

Wi(Y |B)∑
b′

1
2Wi(Y |b′)

]
, (9)

where I(Bi;Y ) represents the mutual information between the
bit Bi in position i, i = 1, . . . ,m, and the channel output
Y and the expectation in (9) is done with respect to the
distribution (Bi, Y ) ∼ Pi ×Wi.
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Fig. 1. Comparison of I0(snr) and I1(snr) for BICM with 16QAM modu-
lation, an AWGN channel and different labelings. The mutual information of
CM with 16QAM modulation is also shown for reference.

For a fixed input distribution, the GMI is concave in s and
the LM rate is jointly concave in s and a(x). One can therefore
evaluate these rates easily using convex optimization routines.
As no such simple decomposition exists for the LM rate, we
keep the optimization problem in (7) with uniform P (x):

I1(snr) = sup
s≥0,a(·)

E

[
log

ea(X)
∏m
i=1Wi

(
Y |bi(X)

)s∑
x′

1
2m e

a(x′)
∏m
i=1Wi

(
Y |bi(x′)

)s
]
,

(10)

where the expectation is done according to (X,Y ) ∼ P ×W .
We consider three different labelings, namely binary re-

flected Gray labeling (BRGL), natural binary labeling (NBL)
and set-partitioning labeling (SPL), (e.g. the one in [1, Fig.
2(a)]). Fig. 1 shows the GMI and LM rate of BICM with
16QAM modulation over an AWGN channel for different
labelings. We also show the mutual information of CM trans-
mission with 16QAM for reference. We observe considerable
improvement of the LM rate over the GMI for NBL and SPL,
and little improvement for BRGL. The GMI of BICM with
Gray labeling is expected to be larger than that with NBL or
SPL and close to the mutual information of CM transmission
except in the low-SNR regime [1], [2], [8]. We observe that
this also happens for the LM rate.

More surprisingly, the LM rate with NBL is very close to
the CM mutual information in the low-SNR regime. Although
the GMI with NBL is known to achieve the minimum energy-
per-bit [8], there is a gap in terms of wideband slope [6]:
the GMI for NBL is first-order optimal, but it is not second-
order optimal. In the next section, we analyze the wideband
regime of the LM rate and prove that the LM rate for NBL is
both FOO and SOO, while the LM rate of BRGL shows no



improvement with respect to that of the GMI.

IV. WIDEBAND REGIME EXPANSION

We wish to find the wideband-regime (Taylor) series expan-
sions of the GMI and LM rates in powers of snr, namely

I0(snr) = c1,GMIsnr + c2,GMIsnr
2 +O(snr3) (11)

I1(snr) = c1,LMsnr + c2,LMsnr2 +O(snr3), (12)

for some coefficients c1,GMI, c2,GMI, c1,LM, and c2,LM. The
summands O(snr3) represent unspecified remainder terms that
grow as snr3 and can be neglected in the wideband regime.
We recall that a communication scheme is FOO if c1 = 1; the
scheme is SOO if c1 = 1 and c2 = − 1

2 .
The following theorem summarizes our main findings:
Theorem 1: The coefficients c1 and c2 of the GMI and LM

rates for BICM are given by

c1,GMI = c1,LM =

m∑
i=1

∑
b

1

2
|X ib|2 (13)

c2,GMI = −1

2

(
mκ(X )−

m∑
i=1

∑
b

1

2
κ(X ib )

)
, (14)

c2,LM = c2,GMI +
1

2

∑
x̄

1

2m

(
m∑

i,j=1;i 6=j

r
(
X ibi(x),X

j
bj(x)

))2

.

(15)

Moreover, the wideband regime of the LM rate is achieved
for s = 1, i.e. letting s vary with snr cannot improve the value
of the coefficient, and

a(x) = −2

m∑
i,j=1;i 6=j

r
(
X ibi(x),X

j
bj(x)

)
snr. (16)

In the theorem, we have used the functions r(a, b) , ab∗+
a∗b and κ(XS), defined for a constellation XS with cardinality
|XS | and mean XS under the probability distribution PS as

κ(XS) ,

(∑
x∈XS

1

|XS |
∣∣x−XS ∣∣2)2

+

∣∣∣∣∣ ∑
x∈XS

1

|XS |
(
x−XS

)2∣∣∣∣∣
2

.

(17)
Sketch of Proof: It is convenient to express I0(snr) and

I1(snr) in terms of a function R1(γ) for fixed s and a(x):

R1(γ) ,
∑
χ

1

2m

∫
W (y|χ)

(
log

ea(χ)+sd(χ,χ,z)∑
x P (x)ea(x)+sd(x,χ,z)

)
dy (18)

=
∑
χ

1

2m

∫
W (z)

(
gχ(χ, z)− log

(∑
x

1

2m
egχ(x,z)

))
dz, (19)

where γ ,
√
snr, we write d(x, χ, z) instead of d(x, y), with χ

the transmitted symbol (while decoders have no access to the
value of χ, we can safely assume it known at the evaluation of
the information rates) and, again with some abuse of notation,
we defined a noise distribution W (z) , W (γχ + z|χ) =
1
π e
−|z|2 , and let gχ(x, z) , a(x) + sd(x, χ, z) be a function

of χ, x, z. Conveniently, only the functions gχ depend on γ.

As the expansions (11) and (12) are related to the first
four derivatives of R1(γ) wrt γ evaluated at γ = 0, we first
evaluate each of the four derivatives and then use them to find
the coefficients c1,GMI, c2,GMI, c1,LM, and c2,LM. We do this
by finding the Taylor series expansion of (19) via the series
expansion of various functions of gχ(x, z): for the expansion
of gχ(x, z), we need the power series of d(x, χ, z) and to
obtain this series we require in turn that of di(b, χ, z) (a variant
of di(b, y) that has access to the transmitted symbol χ).

In the optimization over s and a(x), and with some loss
of generality, we restrict our attention to smooth functions of
the SNR. More precisely, we consider functions that can be
approximated by a Taylor expansion in powers of γ =

√
snr.

We let both s and a(x) depend smoothly on SNR and expand
them in powers of γ =

√
snr, namely

s =
∑

`=0, 12 ,1,
3
2 ,2

1

(2`)!
s`γ

2` (20)

a(x) =
∑

`=0, 12 ,1,
3
2 ,2

1

(2`)!
a`(x)γ2`, (21)

where the various coefficients are to be determined. The
subindices ` denote powers of snr. As the mean of a(x) has
to be finite, we can safely subtract a non-zero value with no
effect on the rate and we assume that

∑
x

1
2m a(x) = 0 . We

also let
∑
x

1
2m a`(x) = 0 for all `. The derivation continues

by isolating the various powers of γ in each derivative to find
the corresponding series coefficient. If the coefficient depends
on s and/or a(x), we optimize its value to maximize the rate.
The process is tedious, although straightforward, and we do
provide only a summary of the main steps involved. Details
are omitted for the sake of conciseness.

Zeroth-order term: The zero-th order term, i.e. propor-
tional to γ0 or a constant, vanishes by choosing a0(x) = 0.
Moreover, it is possible to show that this is the best choice.

First-order term: The first-order term, i.e. proportional
to γ1, vanishes, that is R′1(0), which is consistent with the
absence of a term in γ in the series expansion of the rates.
Moreover, it is possible to show that this term imposes no
additional constraints on the values of s or a(x).

Second-order term: The second-order term, i.e. propor-
tional to γ2, gives the coefficients c1,GMI and c1,LM in the
expansions (11) and (12). For the GMI, c1,GMI is given by [3]

c1,GMI =

m∑
i=1

∑
b

1

2
|X ib|2. (22)

The only possible contributions to the second-order term
of (11) and (12) come from the first- and second-order
derivatives of gχ(x, z), as the zero-th order derivative vanishes.
A tedious calculation gives

R′′1 (0) = 2(2s0 − s2
0)

(
m∑
i=1

∑
b

1

2
|X ib|2

)
. (23)

This quantity is maximized for s0 = 1, the value correspond-
ing to I0(snr). As a(x) does not have an effect on R′′1 (0), we



conclude that the coefficients for I0 and I1 coincide, that is

c1,GMI =
1

2
R′′1 (0)

∣∣
s=1,a(x)=0

=
1

2
max
s,a(x)

R′′1 (0) = c1,LM. (24)

After optimization over s and a(x), c1,LM and c1,GMI coincide.
Consequently, labelings which are FOO for the GMI rate
(e.g. NBL [8]) remain so for the LM rate. Besides, no other
labelings have an FOO LM rate.

Third-order term: The third-order term, i.e. proportional
to γ3, vanishes, i.e. R′′′1 (0) = 0. Moreover, we find that
the third-order term imposes no additional constraints on the
values of s and a(x).

Fourth-order term: The fourth-order term, i.e. propor-
tional to γ4, gives the coefficients c2,GMI and c2,LM in the
expansions (11) and (12). For the GMI, c2,GMI is given by [3]

c2,GMI = −1

2

(
mκ(X )−

m∑
i=1

∑
b=0,1

1

2
κ(X ib )

)
, (25)

where κ(XS) is defined in (17).
The only possible contributions to the fourth-order term

come from the first-, second-, third-, and fourth-order deriva-
tives of gχ(x, z). As intermediate steps in its evaluation, we
find the optimum choices s 1

2
= 0 in (20) and a 1

2
(x) = 0

in (21). The fourth-order derivative R(iv)
1 (0) is given by

R
(iv)
1 (0) = 24c2,GMI − 3

∑
x

1

2m

(
a1(x)2 + 2a1(x)ζ(x)

)
,

(26)

where

ζ(x) = −2

m∑
i=1

∣∣X ibi(x)|
2 + 2

∣∣∣∣ m∑
i=1

X ibi(x)

∣∣∣∣2 (27)

= 2

m∑
i,j=1;i 6=j

r
(
X ibi(x),X

j
bj(x)

)
. (28)

It is possible to show that∑
x

ζ(x) = 0. (29)

In (27) we find the optimum a1(x) by using Lagrange
multipliers. Let the Lagrangian L be

L =
∑
x

1

2m

(
a1(x)2 + 2a1(x)ζ(x)

)
+ 2λ

∑
x

1

2m
a1(x).

(30)

Taking the derivative of the Lagrangian with respect to a1(x),
setting it to zero, and solving for a1(x), we conclude that
a1(x) = −λ− ζ(x). Then, we adjust λ so that the constraint
on the mean of a1(x) is satisfied. As

∑
x ζ(x) = 0 (see (29)),

we conclude that λ = 0 and

a1(x) = −ζ(x). (31)

Substituting the optimum a1(x) in (26), we obtain

max
a1(x)

{
−
∑
x

(
a1(x)2 + 2a1(x)ζ(x)

)}
=
∑
x

ζ(x)2. (32)

Putting (32) back into (26), we obtain c2,LM, namely

c2,LM = max
s,a(x)

1

24
R

(iv)
1 (0) (33)

= c2,GMI +
1

2

∑
x

1

2m

(∣∣∣∣ m∑
i=1

X ibi(x)

∣∣∣∣2 − m∑
i=1

∣∣X ibi(x)|
2

)2

(34)

= c2,GMI +
1

2

∑
x̄

1

2m

(
m∑

i,j=1;i 6=j

r
(
X ibi(x),X

j
bj(x)

))2

.

(35)

The wideband regime of the LM rate is thus achieved by
setting a0(x) = a 1

2
(x) = 0 and a1(x) in (21) and s = 1,

as letting s vary with snr does not improve the coefficients.

Table I shows the coefficients c1 and c2 for GMI and LM
and square 2m-QAM and uniform symbol probabilities. As it
was known, BRGL is not FOO [9]. Moreover, we find that the
coefficients c1 and c2 for BRGL are the same for both GMI
and LM rates. In contrast, NBL turns out to be both FOO and
SOO if we consider the LM rate, while it is FOO only if we
consider the GMI. An interesting question arising from our
analysis is whether all FOO-labelings in terms of GMI turn
our to be also SOO when we consider the LM rate.

TABLE I
COEFFICIENTS c1 AND c2 FOR GMI AND LM AND SQUARE 2m-QAM

c1 c2

GMI LM GMI LM

BRGL
3 · 22m

4 · (22m − 1)
< 1

3 · 22m

4(·22m − 1)
< 1 (14) (35)

NBL 1 1 (14) (< − 1
2

) − 1
2
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