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Abstract

In this note, we show that every constraint satisfaction problem that has
relational width 2 has also relational width 1. This is achieved by means of
an obstruction-like characterization of relational width which we believe to
be of independent interest.
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1. Introduction

Let B be a finite relational structure. In a constraint satisfaction prob-
lem with template B, CSP(B), we are given a relational finite structure A
and the goal is to decide whether A is homomorphic to B. Motivated by
the Feder-Vardi dichotomy conjecture [9] stating that for each B, CSP(B)
is either solvable in polynomial time or NP-complete, there has been a good
wealth of research aimed to distinguish those templates B that give rise to
tractable (i.e., solvable in polynomial time) CSPs from those that do not.
The length of the list of tractable cases known so far (see [5, 7] for recent
surveys) contrasts sharply with the number of algorithmic principles which
is very limited. Indeed, all known tractable cases are solvable either by the
query language Datalog [9], via the “few subpowers” property [10], or by
a combination (sometimes very non-trivial) of the two. Whereas the few
subpowers property is well understood [10], the reach of Datalog Programs
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as a tool to solve CSPs has not yet been precisely delineated, despite con-
siderable effort (see [6] for a survey on the topic). Datalog Programs have
been parameterized in several ways (number of variables per rule, arity of
the IDBs) giving rise to different notions of width. Among them, the re-
lational width, introduced by Bulatov [4], has received considerable interest
(see [4, 1, 2, 3, 13, 11]). An interesting feature of relational width is its
independence on the arity of the relations of B, which makes it particularly
appealing for the so-called algebraic approach to the CSP [5]. The class of
problems with relational width 1 corresponds, in artificial intelligence ter-
minology, to the class of those solvable by the arc-consistency algorithm [8].
Feder and Vardi [9] gave a complete characterization leading to a decision
procedure for deciding if a structure B gives rise to a constraint satisfaction
problem, CSP(B) of relational width 1. Little is known for higher levels of
relational width. For k = 2 or k ≥ 4 we do not possess examples of pure
relational width k problems, i.e., structures B that have relational width k
but not k− 1. In this note we address and solve the case k = 2 showing that
there are not pure relational width 2 problems. This is achieved by providing
an obstruction-like characterization of relational width.

2. Preliminaires and Statement of the Main Result

Most of the terminology introduced in this section is fairly standard. A
vocabulary is a finite set of relation symbols or predicates. In what follows,
τ always denotes a vocabulary. Every relation symbol P in τ has an arity
r = ρ(P ) ≥ 0 associated to it. We also say that P is an r-ary relation symbol.

A τ -structure A consists of a set A, called the universe of A, and a
relation PA ⊆ Ar for every relation symbol P ∈ τ where r is the arity of P .
For ease of notation, we shall say that P (a1, . . . , ar) holds in A to indicate
that (a1, . . . , ar) ∈ PA. All structures in this paper are assumed to be finite,
i.e., structures with a finite universe. Throughout the paper we use the same
boldface and slanted capital letters to denote a structure and its universe,
respectively.

A homomorphism from a τ -structure A to a τ -structure B is a mapping
h : A → B such that for every r-ary P ∈ τ and every (a1, . . . , ar) ∈ PA,
we have (h(a1), . . . , h(ar)) ∈ PB. We say that A is homomorphic to B and
denote this by A → B if there exists a homomorphism from A to B.

If A is a τ -structure and f : A → B a mapping with domain the universe
of A and image a finite set B, we define the homomorphic image of A by
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f , f(A), to be the τ -structure with domain f(A), and such that for every
P ∈ τ of arity, say r,

P f(A) = {(f(a1), . . . , f(ar))|(a1, . . . , ar) ∈ PA}

We define the union A∪B of τ -structures A and B to be the τ -structure
with universe A∪B and such that PA∪B = PA∪PB for every P ∈ τ . Notice
that the union is not necessarily disjoint.

The concept of relational width was introduced initially by Bulatov in [4].
The presentation given here follows [6].

For any mapping f and I ⊆ dom(f) we denote by fI the restriction of
f to I. For every f, g partial mappings from A to B, we write f ⊆ g to
indicate that dom(f) ⊆ dom(g) and that gdom(f) = f . We also say that g is
an extension of f or alternatively that f is a restriction of g.

Definition 1. Let A,B be τ -structures and let k ≥ 1. A k-minimal family
for (A,B) is a nonemtpy set H of partial mappings of arity at most k from
A to B such that for every h ∈ H:

(i) for every tuple P (a1, . . . , am) in A there exists some tuple P (b1, . . . , bm)
in B such that h(ai) = bi for every ai ∈ dom(h) and such that for every
subset I of {a1, . . . , am} with |I| ≤ k, there exists a mapping h′ in H
such that h′(ai) = bi for every ai ∈ I.

(ii) h′ ∈ H for every h′ ⊆ h.

(iii) if dom(h) < k then for every a ∈ A, there exists some h′ ∈ H with
a ∈ dom(h′) and h ⊆ h′

Observation 1. Let A, B, C be τ -structures and let k ≥ 1. If A is homo-
morphic to B and there is a k-minimal family H for (B,C) then there is a
k-minimal family for (A,C).

Proof. Let f be the homomorphism from A to B and define J to be the set
containing for every I ⊆ A of size at most k, and every mapping h in H of
domain f(I), the mapping h ◦ fI . It is easy to verify that J is a k-minimal
family.

There exists a very simple procedure, called the k-minimal test [4], that
decides, given two relational structures A and B, whether there exists a k-
minimal family for (A,B) (and actually finds one). The k-minimal test starts
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by placing in the hypothetical k-minimal family H all partial mappings from
A to B of domain size at most k. Then in an iterative fashion it removes
from H all mappings that do not satisfy any of conditions (1-3) of k-minimal
family until the process stabilizes. Since the number of partial mappings
from A to B with domain size k is bounded by |A||B|k the k-minimal test
runs in polynomial time. We say that (A,B) passes the k-minimal test if
the resulting H is nonempty and that fails otherwise. A structure B has
relational width k if A → B for every structure A such that (A,B) passes
the k-minimal test.

The main result of this paper is the following

Theorem 1. Every structure with relational width 2 also has relational width
1.

3. Proof of Theorem 1

The proof has two ingredients: The first one is an obstruction-like char-
acterization of relational width (Theorem 4). The second ingredient is the
Sparse Incomparability Lemma [12].

Let m ≥ 1. A cycle of length m in a τ -structure A is a collection of
m different tuples P0(a

0
1, . . . , a

0
r0

), . . . , Pm−1(a
m−1
1 , . . . , am−1

rm−1
) that hold in A

such that the cardinality of the set {ai
j | 0 ≤ i ≤ m − 1, 1 ≤ j ≤ ri} is less

than 1 +
∑

0≤i≤m−1(ri − 1).
A loop is a cycle of length 1. The girth of a τ -structure is the length of

its shortest cycle.

Theorem 2. (Sparse Incomparability Lemma) Let k, l be positive integers
and let A be a structure. Then there exists a structure G with the following
properties:

1. G is homomorphic to A

2. For every structure B with at most k elements, A is homomorphic to B
iff G is homomorphic to B

3. G has girth ≥ l.

The following definition introduces the new notion of k-reltree. It will
be shown in Theorem 4 that k-reltrees are precisely the obstructions corre-
sponding to the k-minimal test.
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Definition 2. Let T be a relational structure and let I be a subset of nodes
of T with |I| ≤ k. The pair (T, I) is called a k-reltree (from relational tree)
if

(1) T contains only one tuple with no repeated elements, or

(2) there is a finite collection (Tj, Ij), j ∈ J of k-reltrees and distinct
e1, . . . , en ∈ T , n ≥ 0 such that for all j ∈ J , Tj ∩{e1, . . . , en} ⊆ Ij and
for all i, j ∈ J , Ti ∩ Tj ⊆ {e1, . . . , en}, and

(a) T is the union of the tuple P (e1, . . . , en) (for some n-ary P ∈ τ)
and

⋃
j∈J Tj,and I ⊆ {e1, . . . , en} or

(b) T =
⋃

j∈J Tj and I = {e1, . . . , en}, or

(3) there is a k-reltree (T, I ′) with I ⊆ I ′.

Finally, a structure T is a k-reltree if (T, ∅) is a k-reltree.

Generally, a relational structure A is called a tree if it is cycle-free. In
our terminology, trees are precisely 1-reltrees.

Theorem 3. Let A,B be structures and let k ≥ 1. The following are equiv-
alent:

(a) (A,B) passes the k-minimal test

(b) there is a k-minimal family for (A,B)

Furthermore if A is loop-free then (a) and (b) are also equivalent to the
following statement:

(c) every k-reltree homomorphic to A is homomorphic to B

Proof.

[(a) ⇔ (b)]. This is precisely the proof of the correctness of the k-minimal
test, which is straightforward.
[(b) ⇒ (c)] Let H be a k-minimal family for (A,B). We shall prove that if
(T, I) is a k-reltree, f is a homomorphism from T to A and h is a mapping
in H with dom(h) = f(I) then there exists a homomorphism g from T to B
such that gI = (h ◦ fI). The proof is by structural induction on (T, I).
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(1) T is simply a tuple P (e1, . . . , en) and I is any subset of {e1, . . . , en}
with |I| ≤ k. Let P (a1, . . . , an) be the image of P (e1, . . . , en) accord-
ing to f . Let P (b1, . . . , bn) be the tuple in B guaranteed to exist be-
cause h satisfies condition (i) of a k-minimal family. The mapping
g : {e1, . . . , en} → B, g(ei) = bi, 1 ≤ i ≤ n, satisfies the required
conditions.

(2a) Let P (a1, . . . , an) be the image of P (e1, . . . , en) according to f . Let
P (b1, . . . , bn) be the tuple in B that is guaranteed to exist because h
satisfies condition (i) of a k-minimal family. Set g(ei) = bi for 1 ≤ i ≤
n. In order to define g over the rest of T do the following:

For j ∈ J , consider the the mapping h′j : f(Ij) ∩ {a1, . . . , an} → B
defined by h′j(ai) = bi, ai ∈ dom(h′j). Condition (ii) of a k-minimal
family guarantees that h′j ∈ H. Furthermore, by condition (iii) of a
k-minimal family, H contains an extension hj of h′j with domain f(Ij).
By induction hypothesis there exists a homomorphism gj from Tj to
B such that gj(e) = hj(f(e)) for every e ∈ Ij. Define g(e) = gj(e)
for every j ∈ J and every e ∈ Tj. Mapping g satisfies the required
conditions.

(2b) (T, I) is obtained by rule (2b). Define g(e) = h(f(e)) for all e ∈ I and
extend g over the rest of T as in the previous case.

(3) (T, I) is obtained by rule (3) from (T, I ′) with I ⊆ I ′. By property (iii)
of H there exists h′ defined over f(I ′) that extends h. The mapping g
guaranteed to exist for (T, I ′), f and h′ satisfies the required conditions.

[(c) ⇒ (a)] We shall show that for every mapping h removed from H by
the k-minimal test there exists a k-reltree (T, I), some homomorphism f
from T to A, with fI one-to-one, f(I) = dom(h), and such that for every
homomorphism g : T → B, gI 6= (h ◦ fI). We shall prove it by induction on
the elimination order of h.

If h is removed in the first iteration, then necessarily condition (i) of k-
minimal family is falsified by h. Set T to be the structure containing only
the tuple P (a1, . . . , an) given by the condition, define f to be the identity
mapping, and let I = dom(h).

Assume now that h is removed in some subsequent iteration. We do a
case by case analysis depending on which condition of k-minimal family is
falsified by h.
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(i) Let P (a1, . . . , an) be the tuple that forces h to be eliminated and let
hj, j ∈ J be the set of mappings with domain entirely contained in
{a1, . . . , an} that have been previously removed from H. For each j ∈
J , let (Tj, Ij) and fj be the k-reltree and mapping respectively for
hj. By renaming adequately the nodes of Tj we can assume that fj

restricted to Ij is the identity and that all the other variables are new,
i.e., Ij = Tj ∩ {a1, . . . , an}. We can also assume that apart from the
elements in {a1, . . . , an} any two of these structures do not share any
other element, i.e., for every i 6= j ∈ J , Ti ∩ Tj ⊆ {a1, . . . , an}. We
are now in a position to define (T, I) and f . (T, I) is constructed by
rule (2b) from (Tj, Ij), j ∈ J , the tuple P (a1, . . . , am), and I = dom(h).
f(x) is defined to be the identity if x ∈ {a1, . . . , an} and fj(x) if x ∈ Tj,
otherwise. It is easy to verify that (T, I) and f satisfy the required
conditions.

(ii) There exists some h ⊆ h′ such that h′ was previously removed from H.
Let (T′, I ′) and f ′ be guaranteed by the hypothesis condition. In this
case we only need to set T = T′, I = dom(h), and f = f ′.

(iii) In this case, h is eliminated because | dom(h)| = n < k and there
exists some a such that H does not contain any extension of h defined
over a. Hence, every possible extension hj : dom(h) ∪ {a}, j ∈ J
of h has been previously removed from H. For every j ∈ J , there
exists suitable (Tj, Ij), and fj. Let dom(h) = {a1, . . . , an} and rename
the variables of the structures Tj, j ∈ J so that for every j ∈ J ,
Tj ∩ {a1, . . . , an} ⊆ Ij, fj is the identity on Tj ∩ {a1, . . . , an}, and
for all i 6= j ∈ J , Ti ∩ Tj ⊆ {a1, . . . , an}. We set T to be

⋃
j∈J Tj,

I = {a1, . . . , an}, and set f(x) to be the identity if x ∈ {a1, . . . , an}
and fj(x) where x ∈ Tj, otherwise. (T, I) and f satisfy the required
conditions.

Finally we prove the contrapositive of the implication. If the k-minimal
test fails then the mapping h with empty domain is removed. This implies
that condition (c) is false.

In order to prove our main theorem we will use an obstruction-like char-
acterization of relational width.
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Definition 3. Let B be a τ -structure. A set O of τ -structures is an obstruc-
tion set of B if for every τ -structure A

A → B iff ∀O ∈ O,O 6→ A

Observe that as direct application of Theorem 3 it can be shown that a
structure has relational width k iff it has an obstruction set consisting of k-
reltrees. Although this would be enough in order to prove our main theorem
we believe that it is interesting to introduce here another class of relational
structures, which we call k-greltrees (from generalized reltrees). The notion
of k-greltree is a proper generalization of that of k-reltree but as we will
show in Theorem 4 both concepts are equivalent when it comes to define
obstructions. The reason why we believe the notion of k-greltree might be
appealing is because it is defined in terms of tree-decompositions as several
other related notions such as treewidth.

Definition 4. Let A be a τ -structure. A tree-decomposition of A is a pair
(T, ϕ) where T is a tree and ϕ : V (T ) → P(A) is a mapping that assigns to
every node of T a set of elements of A, satisfying the following conditions:

1. nodes containing any given element of A form a subtree,

2. for any tuple in any relation of A, there is a node in T containing all
elements from that tuple.

Note: for ease of notation we say that a node v ∈ V (T ) contains an
element a ∈ A if a ∈ ϕ(v).

Definition 5. A τ -structure A is a k-generalized relational tree (or k-greltree)
if there exists a tree-decomposition (T, ϕ) of A such that:

(i) two different nodes of T share at most k elements

(ii) for every node t of T there exists a tuple of A that contains every
element of t or t has size at most k.

Observe also that if all predicates in τ have arity at most k then a τ -
structure is a k-greltree iff its Gaifman graph has treewidth at most k − 1.

Lemma 1. Let A be a structure and let k ≥ 1. If A is a k-reltree then it is
also a k-geltree.
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Proof. It is easily shown by structural induction that if (A, I) is a k-reltree
then there is a tree-decomposition (T, ϕ) of A and a node v ∈ T such that
ϕ(v) = I.

The converse is not true as in particular a k-reltree, for any k, cannot
have loops. But this is not the only reason: consider for example a structure
A with k ≥ 2 nodes a1, . . . , ak and with only one k-ary relation with tuples
(a1, . . . , ak) and (a2, . . . , ak, a1). Structure A is not a (k − 1)-reltree but it
is certainly a 1-geltree as shown by the tree decomposition containing one
single node v with ϕ(v) = {a1, . . . , ak}. However one can show that if a
structure has an obstruction set consisting of k-greltrees then it also has one
containing only k-reltrees.

Theorem 4. Let B be a structure and k ≥ 1. The following are equivalent:

(a) B has relational width k

(b) B has an obstruction set consisting of k-reltrees

(c) B has an obstruction set consisting of k-greltrees.

Proof. The equivalence between (a) and (b) is a direct consequence of
Theorem 3 although an small adjustment needs to be done as, in Theorem 3,
structure A is assumed to be loop-free.

[(a) ⇒ (b)] We need to show that if B is a structure with relational
width k and A is a structure (not necessarily loop-free) homomorphic to B
then A admits an homomomorphism from some k-reltree not homomorphic
to B. By the Sparse Incomparability Lemma, if A is not homomorphic to
B there exists some loop-free structure G that is homomorphic to A and
not homomorphic to B. Theorem 3 shows that there exists a k-reltree C
homomorphic to G (and hence to A) and not homomorphic to B.

[(b) ⇒ (a)] Let B be a structure satisfying condition (b) and let A be
a structure not homomorphic to B. Again by the Sparse Incomparability
Lemma, there exists some loop-free structure G that is homomorphic to A
and not to B. By Theorem 3, there is no k-minimal strategy for (G,B), which
by Observation 1 implies that there is no k-minimal strategy for (A,B).

[(b) ⇒ (c)] follows from Lemma 1 so it only remains to show that [(c) ⇒
(b)]. Let B be a structure satisfying condition (c) and let O be a obstruction
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set of B consisting of k-geltrees. It is only necessary to show that every A
not homomorphic to B admits an homomomorphism from some k-reltree C
in O. Again by the Sparse Incomparability Lemma, if A is not homomorphic
to B there exists some structure G with girth at least 3 that is homomorphic
to A and not homomorphic to B. Consequently there exists some C in O
that is homomormorphic to G (and hence to A). We shall show that C is,
indeed, a k-reltree. Let (T, ϕ) be a tree-decomposition of C satisfying the
conditions of Definition 5. Observe that in a tree-decomposition T we can
replace any edge (v, v′) in T by two edges (v, u), (u, v′) where u is a new node
with ϕ(u′) = ϕ(v)∩ϕ(v′) obtaining again a tree-decomposition that satisfies
the conditions of Definition 5. Hence we can assume wlog. that for every edge
(v, v′) of T ϕ(v) ⊆ ϕ(v′) or ϕ(v′) ⊆ ϕ(v). Furthermore, condition (ii) of a k-
greltree gurantees that there is no edge in T between two nodes of size larger
than k. We also assume by adding a node if necessary that T contains at
least one node of size at most k. We shall prove by induction on the number
of nodes of T that if v is a node in T with size at most k, then (C, ϕ(v)) is
a k-reltree. For the base case of the induction assume that T consists of a
single node of size at most k. Hence C has necessarily at most k nodes and
the result follows from the observation that by repeated application of rules
(1),(2b) and (3) of a k-reltree it is possible to generate all structures with at
most k nodes (indeed, it is easy to see that by iterative application of these
rules one could generate any structure with a tree-decomposition consisting
only of nodes of size at most k). For the inductive case, assume first that all
neighbours vj, j ∈ J , of v, have size at most k. Let Tj, j ∈ J , be each one of
the connected components of T after removing node v, and let Cj, j ∈ J , be
the substructure of C induced by

⋃
u∈Tj

ϕ(u). By the inductive hypothesis

(Cj, ϕ(vj)), j ∈ J is a k-reltree. Also, if C′ is the substructure of C induced
by ϕ(v), then by induction hypothesis (C′, ϕ(v)) is a k-reltree. Finally C is
obtained from (Cj, ϕ(vj)), j ∈ J , and (C′, ϕ(v)) by using rule (2b).

If v has an edge to a node v′ of size larger than k then let vj, j ∈ J the set
of neighbours (including v) of v′, let Tj j ∈ J be each one of the connected
components of T after removing v′, and let Cj, j ∈ J be the substructure
of C induced by

⋃
u∈Tj

ϕ(u). Since for every j ∈ J , vj has size at most k,

(Cj, ϕ(vj)) is a k-reltree. Now let us turn our attention to v′. Since the size
of ϕ(v′) is larger than k there is a tuple t = P (e1, . . . , en) of C containing all
nodes in ϕ(v′). Also, condition (2) of tree-decomposition guarantees that all
elements of t are contained in a node v∗ of T . This node should be precisely
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v′ since otherwise the intersection ϕ(v′)∩ϕ(v∗) which is ϕ(v′) would be larger
than k. Hence ϕ(v′) is precisely {e1, . . . , en}. Let tj, j ∈ J ′ be the class of
all tuples of C different than t and entirely contained in {e1, . . . , en}. We
can infer that for every j ∈ J ′, tj has arity 1 because otherwise the image of
tuples t and t′ in G would be a cycle of lenght at most 2 which is impossible
(Note here that it is crucial that all elements of tj are contained in t as
otherwise both tuples could have the same image in G). For every j ∈ J ′,
the pair (Dj, {eij}) where Dj is the structure containing only tuple tj and
eij its only element is a k-reltree. Finally, (C, ϕ(v)) is obtained by applying
rule (2a) with t = P (e1, . . . , en) and k-reltrees (Cj, vj) j ∈ J and (Dj, {eij}),
j ∈ J ′ (Here we are using also the fact that ϕ(v) is necessarily contained in
ϕ(v′)).

Lemma 2. Every 2-greltree with girth at least 3 has no cycles.

Proof. This is done by contradiction. Let

P1(a
1
1, . . . , a

1
r1

), . . . , Pm−1(a
m−1
1 , . . . , am−1

rm−1
)

be a cycle in A and let us assume that m is minimal. Hence ri ≥ 2 for
i = 1, . . . ,m − 1. Furthermore, by the minimality of m we can assume
that there exists different elements a0, . . . , am−1 ∈ A such that for every
0 ≤ i 6= j ≤ m − 1, the ith and the jth tuple share only element ai if
i + 1 = j (mod m) and none otherwise.

Let (T, ϕ) be a suitable tree-decomposition of A that certifies that A is a
2-greltree. By the definition of tree-decomposition, for every 0 ≤ i ≤ m− 1,
T contains a node, let us call it ni, that contains {ai

1, . . . , a
i
ri
}. Since ri ≥ 2

then , by definition 5, ni should be precisely {ai
1, . . . , a

i
ri
}, as we cannot have

two different tuples containing {ai
1, . . . , a

i
ri
} as this would be a cycle of length

2. Consider the following walk in T : Start in n0 and follow the unique path
from n0 to n1, then continue following the unique path from n1 to n2, and
proceed in the same way until by crossing the path from nm−1 to n0 the walk
returns to n0. Let us start by showing that after reaching node n1 for the
first time, the walk must reverse direction. Indeed, let i ≥ 1 such that n1

is crossed back later when following the path from ni to ni+1 (mod m). By
the definition of tree-decomposition every node in the path from ni to ni+1

contains ai and hence ai belongs to n1. But this is only possible if i = 1 and
hence the walk must reverse direction.
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The walk then proceeds by following the path from n1 to n2. Every node
in this segment contains a1 and hence by the same type of reasoning it cannot
cross n0. Hence there is some node u at which this path stops going towards
n0 and branches off in a different direction. Necessarily {a0, a1} ⊆ u as u
participates both in the path going from n0 to n1 and the path going from
n1 to n2. Later on during the walk, u must be necessarily crossed back, say,
when walking the path from node ni to ni+1 (mod m) for some i ≥ 2. Hence
u contains ai as well. Since u has cardinality at least 3 there exists a tuple
in A containing {a0, a1, ai}. This tuple jointly with tuple P1(a

1
1, . . . , a

1
r1

)
constitutes a cycle of length 2, which is impossible.

Proof. (of Theorem 1)
Let B be a τ -structure with relational width 2. We shall show that if A

is a structure not homomorphic to B then (A,B) fails the 1-minimal test.
By the Sparse Incomparability Lemma, if A is not homomorphic to B there
exists some structure G with girth at least 3 that is homomorphic to A and
not homomorphic to B. By Theorem 4 there exists some 2-greltree C that
is homomorphic to G but not to B. Pick such C with minimum number of
tuples. We shall see that the girth of C is at least 3, and hence, by Lemma 2,
C is a tree. By composition of homomorphisms C is homormorphic to A
but not to B. Therefore by Theorem 3, (A,B) fails the 1-minimal test.

It only remains to check that if C is a 2-greltree with minimum number
of tuples homorphic to G but not to B then C does not have cycles of length
at most 2. Clearly, if C has a cycle of length 1 then its image in G is, as
well, a cycle of lenght 1 which is impossible. The same reasonning does not
always apply to cycles of length 2. Indeed, if P0(a

0
1, . . . , a

0
r0

), P1(a
1
1, . . . , a

1
r1

)
is a cycle of C and h is a homomorphism from C to G then it is possible
that the image P0(h(a0

1), . . . , h(a0
r0

)) P1((a
1
1), . . . , (a

1
r1

)) is not a cycle of G if
the two tuples of the image are the same. Hence we can assume that the two
predicates are the same and for ease of notation we write P = P0 = P1 and
r = r0 = r1.

Define the mapping f : C → C with f(a1
i ) = a0

i for all i = 1, . . . , r and
f acting as the identity in all other cases. Clearly, the image of f , f(C),
is homomorphic to G, because h(a0

i ) = h(a1
i ) for all i = 1, . . . , r, and not

homomorphic to B. We shall show that f(C) is a 2-greltree contradicting
the minimality of C.

Let (T, ϕ) be a suitable tree-decomposition of C and let u0 be a node
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of T containing {a0
1, . . . , a

0
r}. It is not difficult to see that indeed ϕ(u0) is

precisely {a0
1, . . . , a

0
r} since otherwise ϕ(u0) would have size at least 3 and

hence necessarily all nodes in it would be contained in a tuple t. This would
be impossible because the images according to h of t and P (a0

1, . . . , a
0
r) would

constitute a cycle of size 2 in G. By the same reasonning there is a node u1

in T such that ϕ(u1) = {a1
1, . . . , a

1
r}. By condition (i) of 2-greeltree, tuples

P0(a
0
1, . . . , a

0
r0

), P1(a
1
1, . . . , a

1
r1

) share exactly two elements and for ease of
notation we shall assume that the common elements are precisely the first
two and write a1 = a0

1 = a1
1 and a2 = a0

2 = a1
2,

The set of nodes of T can be partitioned in two sets of nodes V0 and V1

such that:

• V0 and V1 are connected in T ,

•
⋃

v∈V0
ϕ(v) ∩

⋃
v∈V1

ϕ(v) = {a0, a1}, and

• ui ∈ Vi for i = 0, 1.

The partition can be obtained in the following way: define V0 to be the
set of all elements reachable from u0 without crossing u1 and V1 to be the
rest of nodes. It is clear that V0 and V1 satisfy all the requiered conditions.

For i = 0, 1, let Ci be the substructure of C induced by
⋃

v∈Vi
ϕ(v). Then

f(C) = f(C0) ∪ f(C1) = C0 ∪f(C1). C0 is clearly a 2-reltree and indeed a
tree-decompostion (T0, ϕ0) of C0 can be obtained by restricting (T, ϕ) to the
nodes in V0. Since f is a bijection over C1, then a suitable tree-decomposition
(T1, ϕ1) of C1 can be obtained by setting T1 to be the restriction of T over
V1 and ϕ1(v) = {f(a) | a ∈ ϕ(v)}, v ∈ V1. Define T ′ to be the tree obtained
by making the union of T0 and T1 and gluing toghether u0 and u1. Define
ϕ′ : V (T ′) → f(C) to be ϕ0(v) if v ∈ T0 and ϕ1(v) if v ∈ T1. The pair (T ′, ϕ′)
is a suitable tree-decomposition of f(C).
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