
On the power of k-consistency

Albert Atserias1?, Andrei Bulatov2, and Victor Dalmau3

1 Universitat Politècnica de Catalunya, Barcelona, Spain,
atserias@lsi.upc.edu,

2 Simon Fraser University, Vancouver, Canada,
abulatov@cs.sfu.ca,

3 Universitat Pompeu Fabra, Barcelona, Spain,
victor.dalmau@upf.edu

Abstract. The k-consistency algorithm for constraint-satisfaction prob-
lems proceeds, roughly, by finding all partial solutions on at most k vari-
ables and iteratively deleting those that cannot be extended to a partial
solution by one more variable. It is known that if the core of the struc-
ture encoding the scopes of the constraints has treewidth at most k,
then the k-consistency algorithm is always correct. We prove the exact
converse to this: if the core of the structure encoding the scopes of the
constraints does not have treewidth at most k, then the k-consistency
algorithm is not always correct. This characterizes the exact power of
the k-consistency algorithm in structural terms.

1 Introduction

Let A and B be two relational structures of the same type. For concreteness, we
can think of A and B as directed graphs, each consisting of a set of vertices and a
binary relation on the vertices. A homomorphism from A to B is a map from the
domain of A to the domain of B that preserves all the relations. Homomorphisms
play a prominent role in combinatorics, logic, and algebra, and also in computer
science. Consider for example the constraint-satisfaction problem, where we are
given a set of variables that range over a domain of values, and a set of constraints
between tuples of variables and tuples of values. The goal is to find an assignment
of values to the variables in such a way that all given constraints are fulfilled.
It was observed by Feder and Vardi [9] that this problem can be phrased as a
homomorphism question between a relational structure A encoding the set of
constraint variables (scopes), and a relational structure B encoding the set of
valid assignment to those variables.

The k-consistency algorithm is a well-known heuristic algorithm to decide
the existence of a homomorphism between two structures, or equivalently, to
solve constraint-satisfaction problems. In order to simplify the exposition, let us
focus again on finite directed graphs A = (A, EA) and B = (B, EB) and let
us fix k = 1. The 1-consistency algorithm is commonly referred to as the arc-
consistency algorithm. This algorithm proceeds in rounds by iteratively reducing

? Supported in part by CICYT TIN2004-04343

the set of possible places L(a) ⊆ B where a vertex a ∈ A may be mapped.
Initially, every a ∈ A can be mapped to any b ∈ B, so we start with L(a) = B.
At each round, if there exists an arc (a, a′) ∈ EA and a b ∈ L(a) for which no
b′ ∈ L(a′) exists such that (b, b′) ∈ EB, we remove b from L(a). Similarly, if
there exists a b′ ∈ L(a′) for which no b ∈ L(a) exists such that (b, b′) ∈ EB, we
remove b′ from L(a′). This process is repeated until there are no more changes
in the L(a)’s. If at termination L(a) is empty for some a ∈ A, we can guarantee
that there exists no homomorphism from A to B. Otherwise, we say that the
instance A,B passes the arc-consistency test. In this case we know that if there
exists a homomorphism h : A → B, we must have h(a) ∈ L(a) for every a ∈ A.
Henceforth, the arc-consistency algorithm can be used in order to narrow the
possible space of solutions, and indeed, many of the practical CSP solvers use
some form of consistency in order to prune the search tree. Furthermore, most
of the known tractable subcases of the CSP are solvable by testing some sort of
consistency.

The k-consistency test for general k is the natural generalization of this
algorithm to k-tuples. The main goal of this paper is to study the power of the
k-consistency test as a tool to decide the existence of a solution by itself. More
precisely, we are interested in characterizing under which circunstances we can
guarantee that every instance passing the k-consistency test has a solution.

Note, first, that the consistency test runs in time polynomial in |A| · |B|,
which is polynomial in the size of the input. Therefore, since the general homo-
morphism problem is NP-complete, we cannot expect it to be correct on every
instance. Interestingly, though, it is known that the algorithm is correct when
the underlying graph of A is acyclic [10]. This gives a large class of inputs where
the algorithm can be used to find homomorphisms in polynomial time. It was
later observed that it suffices if the core of A is acyclic [6], where the core of
a relational structure A is the smallest substructure that has homomorphisms
from and to A. It is known that such a substructure exists and is unique up to
isomorphism [13]. This widens the class of instances where the algorithm works
correctly even further. But is that all?

Main result The main result of this paper is the complete answer to the ques-
tion above. In fact, our result answers the corresponding question for the k-
consistency test. In this context, the role of graph acyclicity is played by the
concept of treewidth, which is a measure to calibrate the similarity of a graph
with a tree.

Treewidth was introduced in the deep work on graph minors by Robertson
and Seymour, and has played an important role in algorithmic graph theory since
then. For constraint-satisfaction problems, treewidth was identified as useful by
Freuder [11], and later revisited by several others [9, 19, 14, 6]. Freuder observed
that if the treewidth of A is at most k, then the k-consistency algorithm is
always correct. As with the acyclic case, it was later observed that it suffices
that the treewidth of the core of A be bounded by k. Thus, it was proved in
[6] that if the treewidth of the core of A is at most k, then the k-consistency
algorithm is always correct. Our main result is an exact converse to this: if the

treewidth of the core of A is more than k, then the k-consistency algorithm is
not always correct. Note that since treewidth at most 1 agrees with acyclicity of
the underlying undirected graph, our main result implies, in particular, that if
the core of A is not acyclic, then the arc-consistency test is not always correct.

Related work The notion of k-consistency has proven to be very robust and,
besides being one of the central concepts in theory of constraint-satisfaction
problems, has also emerged independently in areas as diverse as finite model
theory [18], graph theory [16], and proof complexity [1].

The limits of the k-consistency algorithm as a method for finding homomor-
phisms had been studied before to some extent. First, for each fixed k, concrete
examples where the algorithm is not correct can be easily found. For example,
let A be a complete graph on k + 2 vertices, and let B be a complete graph on
k + 1 vertices. It is not hard to see that there is no homomorphism from A to
B yet this instance passes the k-consistency test.

Second, Feder and Vardi [9] proved that there exists a fixed finite structure B
for which it is possible to determine the existence of a homomorphism A → B in
polynomial time, yet the k-consistency algorithm fails for every fixed k. In fact,
the structure B is very explicit and corresponds to the constraint-satisfaction
problem of solving systems of linear equations over the two-element field.

Third, Grohe [12] proved the following very general result. Let F be a class of
structures and consider the restricted homomorphism problem when A is taken
from F and B is an arbitrary structure. For which F ’s is this problem solvable
in polynomial time? We know already from [6] that if the class of cores of F has
bounded treewidth, then the problem is solvable in polynomial time. Assuming
a conjecture in parameterized complexity theory, Grohe proved the converse to
this result: if the problem is solvable in polynomial time, then the class of cores of
structures in F has bounded treewidth. In particular, this implies that for every
k > 1, there exists some k′ such that if the treewidth of the core of a structure A
is at least k′, then the k-consistency algorithm is not always correct. In his proof,
the k′ is an exponential function of k given by an application of the Excluded
Grid Theorem (EGT) of Robertson and Seymour. Instead, our result shows that
k′ = k + 1 with the additional important feature that our proof does not need
the EGT or any conjecture in parameterized complexity theory.

2 Preliminaries

Graphs, structures, and treewidth A vocabulary is a finite set of relation symbols
or predicates. Every relation symbol in a vocabulary has an arity associated to
it. For a vocabulary σ, a relational structure A of type σ is a pair consisting of
a set A, called the universe of A, and a sequence of relations RA, one for each
relation symbol R from σ, such that the arity of RA is equal to that of R. For
example, a graph is a structure with a single binary relation that is symmetric
and irreflexive. All structures in this paper are assumed to be finite, i.e. having
a finite universe.

A structure B is called an induced substructure of a structure A of type σ,
if the universe B of B is a subset of the universe A of A, and for any R ∈ σ,
RB = RA ∩ Br, where r is the arity of R.

The Gaifman graph of a relational structure A = (A; R1, . . . , Rn) is the graph
with vertex set A and such that (a, b) is an edge if and only if a 6= b, and a and
b belong to the same tuple from one of the relations R1, . . . , Rn. Note that loops
are never included in the Gaifman graph.

A tree decomposition of a graph G = (V ; E) is a labeled tree T such that

1. every node of T is labeled by a non-empty subset of V ,
2. for every edge (v, w) ∈ E, there is a node of T whose label contains {v, w},
3. for every v ∈ V , the set of nodes of T , whose labels contain v, is a subtree

of T .

The width of a tree decomposition T is the maximum cardinality of a label in T
minus 1. The treewidth of a graph G is the smallest number k such that G has
a tree decomposition of width k. Note that the treewidth of a tree (containing
at least one edge) is one. The treewidth of a structure is the treewidth of its
Gaifman graph.

Homomorphisms, constraint-satisfaction and cores A homomorphism from a
structure A to a structure B of the same type is a mapping f : A → B between
the universes of A and B such that for every r-ary R ∈ σ and every (a1, . . . , ar) ∈
RA, we have (f(a1), . . . , f(ar)) ∈ RB. The fact that there is a homomorphism
from structure A to structure B we denote by A → B. If a homomorphism does
not exist we write A 6→ B.

Let A and B be two finite relational structures over the same vocabulary
σ. We can think of the pair A,B as an instance of the constraint satisfaction
problem, where the elements of A are the variables of the problem, and the
elements of B are the values they may take. A tuple (x1, . . . , xr) ∈ RA denotes
the constraint that the variables x1, . . . , xr need to take values in B in such a
way that the resulting tuple belongs to RB. Therefore, a solution is a mapping
f : A → B that defines a homomorphism from A to B.

If A and B are classes of finite relational structures of the same type, the
constraint-satisfaction problem CSP(A, B) asks, given a pair of structures A ∈ A

and B ∈ B, whether or not there is a homomorphism from A to B. If A is the
class of all finite structures of a certain type, then we write CSP(∗, B) instead of
CSP(A, B). Similarly, if B is the class of all finite structures, we write CSP(A, ∗).
In addition, if B is one-element, say, B = {B}, then we write CSP(∗,B), and
similarly for CSP(A, ∗).

Example 1. Let H be a (directed) graph. In the H-COLORING problem we
are asked whether there is a homomorphism from a given graph G to H . So, the
H-COLORING problem is equivalent to the problem CSP(∗, H).

Example 2. In the CLIQUE problem we are asked whether a given graph con-
tains a clique of a given size. It is not hard to see that CLIQUE is equivalent
to CSP(K, ∗), where K is the class of all finite complete graphs.

An endomorphism h of A is a homomorphism from a A to itself. Further-
more, h is said to be an automorphism if it is bijective. A structure is a core
if every endomorphism is an automorphism. A core of a relational structure A
is an induced substructure B such that A → B and B is a core. All cores of a
structure are isomorphic, and therefore we can talk about the core core(A) of a
structure A. It is easy to see that a structure A and its core are homomorphically
equivalent, meaning that A → core(A) and core(A) → A. This allows one to
reduce many homomorphism properties of structures and classes of structures,
i.e. the complexity of problems CSP(∗, B), CSP(A, ∗), to the properties of their
cores. Yet, with respect to computational complexity, a structure and its core
are not always freely exchangable. In particular, it has been shown that decid-
ing whether a structure is a core is co-NP-complete [15], which implies that, in
general, it is hard to compute the core of a structure.

3 The k-Consistency Test

Fix some k ≥ 1. The k-consistency test is a simple algorithm that, given a pair of
structures A and B, either provides a certificate that there is no homomorphism
from A to B, or narrows the set of elements of B to which each element of A
may be mapped.

Recall that a solution is a mapping f : A → B that defines a homomorphism
from A to B. A partial solution, also called a partial homomorphism, is a map-
ping f : A′ → B, where A′ ⊆ A, such that f defines a homomorphism from the
substructure of A with universe A′ to the structure B. In other words, f is a
function such that for every r-ary relation symbol R ∈ σ and a1, . . . , ar ∈ A′,
if (a1, . . . , ar) ∈ RA then (f(a1), . . . , f(ar)) ∈ RB. If f and g are partial so-
lutions we say that g extends f , denoted by f ⊆ g, if Dom(f) ⊆ Dom(g) and
f(a) = g(a) for every a ∈ Dom(f). If f ⊆ g we also say that f is the projection
of g to Dom(f).

Now we can state the k-consistency algorithm.

1. Given structures A and B;
2. Let H be the collection of all partial solutions f with |Dom(f)| ≤ k + 1;
3. For every f in H with |Dom(f)| ≤ k and every a ∈ A, if there is no g in H

such that f ⊆ g and a ∈ Dom(g), remove f and all its extensions from H ;
4. Repeat step 3 until H is unchanged;
5. If H is empty reject, else accept.

There are several different but equivalent ways of defining the k-consistency
algorithm. Our formulation is inspired by the existential (k + 1)-pebble game
of Kolaitis and Vardi [19]. The connection between the two concepts is due to
Kolaitis and Vardi [19].

It is possible to run the algorithm in time polynomial in |A|k+1|B|k+1 because
the size of H in step 2 is bounded by that number, and each iteration removes
at least one partial solution. Note that for fixed k, this is time polynomial in the

size of the input. However, if k is part of the input, the problem of deciding if
the k-consistency test accepts on a given instance is EXP-complete (see [17]).

It is obvious that for any satisfiable instance A,B and any k ≥ 1, the k-
consistency test accepts. The converse is not necessarily true. It holds, for ex-
ample, if k is as large as the cardinality of the universe of A but it might fail for
smaller values of k (a counterexample easy to verify is given by fixing A = Kk+2

and B = Kk+1, where Kn is the clique with n vertices). The identification of
those cases for which the converse is also true is of great interest as it would
allow to use the k-consistency test alone in order to decide the existence of a
solution.

Definition 1. Let A and B be families of relational structures and let k ≥ 1.
We say that k-consistency solves CSP(A, B) if for every A ∈ A and B ∈ B on
which the k-consistency test accepts, there exists a homomorphism from A to B.

The vast majority of the CSP literature assumes that either A or B is the
set of all structures. Although some rather limited results have been obtained in
the most general case, a serious attack of this problem seems rather challenging
and out of reach by the known techniques.

Observe that k-consistency solves CSP(∗, B) if and only if it solves CSP(∗,B)
for every B ∈ B. A similar observation can be made for every A. Consequently,
the two main open problems in this research direction can be formulated in the
following way:

Problem 1. (k-width problem) Characterize all structures A for which k-
consistency solves CSP(A, ∗). Any such structure is called a k-width structure.
We also say that A has k-width.

Problem 2. (width-k problem) Characterize all structures B for which k-
consistency solves CSP(∗,B). Any such structure is called a width-k structure.
We also say that B has width-k.

For some particular cases, having width-k for some k > 1 is the only reason
for polynomial time decidability of a problem. For example, a celebrated result
of Hell and Nesetril [14] asserts that, for a graph H , if H is bipartite then
H-COLORING is tractable via the 2-consistency algorithm, and if H is non-
bipartite then H-COLORING is NP-complete. Later, Nesetril and Zhu proved,
without assuming P 6= NP, that a finite graph H has width-2 if and only if H is
bipartite,

A similar statement is not true in the general case of CSP(∗, B) [9], and even
in the case of H-COLORING where H is a digraph [2]: there are constraint-
satisfaction problems that are solvable in polynomial time, but not by establish-
ing consistency at any level. An example of this is the problem of checking the
consistency of systems of linear equations.

Characterizing those structures having width-k, is a long standing open prob-
lem [8], whose solution is only known in a few particular cases of classes of 2-
and 3-element structures [21, 4], and of conservative structures [5].

4 Main result

This paper addresses and solves completely, in conjunction with [6], the k-width
problem. The following sufficient condition for a structure to have k-width was
identified in [6]:

Theorem 1 ([6]). Let A be a structure and let k ≥ 1. If core(A) has treewidth
at most k then A has k-width.

Here we prove the exact converse.

Theorem 2. Let A be a structure and let k ≥ 1. If A has k-width then core(A)
has treewidth at most k.

Before we prove this, it will be convenient to define the existential pebble
game and state the connection with the k-consistency test first pointed out by
Kolaitis and Vardi [19].

The existential k-pebble game is played between two players, the Spoiler and
the Duplicator, on two relational structures A and B in accordance with the
following rules: on the first round of the game the Spoiler places pebbles on
some elements a1, . . . , ak of A, and the Duplicator responds by placing pebbles
on elements b1, . . . , bk of B; on every further round the Spoiler removes a pebble
and places it on another element of A, the Duplicator responds by moving the
corresponding pebble on B. The Spoiler wins if at the end of some round the
mapping ai 7→ bi, 1 ≤ i ≤ k, is not a partial homomorphism from A to B. The
Duplicator wins if he has a winning strategy, i.e. a systematic way that allows
him to sustain playing “forever”.

Although this presentation of the existential k-pebble game is certainly very
intuitive, it is customary and generally simpler to work with an equivalent “al-
gebraic” definition of the game. The key notion here is that of winning strategy
for the Duplicator.

Definition 2. A winning strategy for the Duplicator in the existential k-pebble
game between A and B is a nonempty collection H of partial homomorphisms
from A to B satisfying the following conditions: (a) (restriction condition) if
f ∈ H and g ⊆ f , then g ∈ H; (b) (extension condition) if f ∈ F , |Dom(f)| < k,
and a ∈ A, there is g ∈ H such that f ⊆ g and a ∈ Dom(g).

Such a set can be found by starting with the collection of all partial homo-
morphisms on subsets of at most k elements, and then removing homomorphisms
that do not satisfy one of conditions (a) or (b). Note that this is exactly what the
algorithm of the (k − 1)-consistency test does. Now, it is not difficult to see [19]
that the k-consistency algorithm constructs the most general, i.e., largest, win-
ning strategy for the Duplicator when it exists and reports unsatisfiable when
there is no winning strategy. Now we are ready for the proof of the main result:

Proof of Theorem 2: Let A = (A; RA
1 , . . . , RA

n) be a relational structure, and
G = G(A) its Gaifman graph. Let G = (A, E).

Since A has k-width if and only if core(A) has k-width, we may assume that
A = core(A).

E is a symmetric and irreflexive binary relation on A. We denote edges of
G by unordered pairs e = {a, a′}. Let a0 ∈ A be a distinguished point of A to
be defined later. For every a ∈ A, let da denote the degree of a in G, and let
ea
1 , . . . , e

a
da

be a fixed enumeration of all the edges that are incident on a.
Let B = B(A) be the relational structure defined as follows. The set of

vertices of B is the set of all tuples of the form (a, (b1, . . . , bda
)), where

1. a ∈ A and b1, . . . , bda
∈ {0, 1},

2. b1 + · · · + bda
≡ 0 (mod 2) if a 6= a0,

3. b1 + · · · + bda
≡ 1 (mod 2) if a = a0.

A tuple ((a1, (b1
1, . . . , b

1
d

a1
)), . . . , (an, (bn

1 , . . . , bn
dan

)) belongs to the (n-ary) rela-

tion RB

i if and only if

1. the tuple (a1, . . . , an) belongs to RA

i ,

2. if `, m, i and j are such that {a`, am} = ea`

i = eam

j , then b`
i = bm

j .

Intuitively, each vertex of B is an assignment of 0/1-values to the edges of G(A)
incident to a given point a ∈ A, and the tuples from relations of B encode the
constraints that the assignments of values to the edges of two adjacent points
a, a′ ∈ A must be consistent.

Example 3. Let A be a clique with vertices a, b, and c. If we choose the distin-
guish vertex a0 to be a, the structure B(A) is the graph with the vertex set
{(a, (0, 1)), (a, (1, 0)), (b, (0, 0)), (b, (1, 1)), (c, (0, 0)), (c, (1, 1))} shown in the pic-
ture.

a

b c

a,01 a,10

b,00
b,11

c,00
c,11

1

1

2

2 1

2

Fig. 1. A and B(A).

Note that the first projection π : B → A, defined by π((a, (b1, . . . , bda
))) = a

is a homomorphism from B to A.

Lemma 1. If A is a core, then there is no homomorphism from A to B.

Proof. Suppose that A is a core, and suppose for contradiction that h : A → B
is a homomorphism from A to B. Let π : B → A be the first projection.

Composing, f = h ◦ π is a homomorphism from A to A, and since A is a
core, it must be an automorphism. Now, let g = h ◦ f−1 and note that g is
still a homomorphism from A to B with the additional property that g(a) =
(a, (ba

1 , . . . , b
a
da

)) for some ba
1, . . . , b

a
d ∈ {0, 1} and every a ∈ A.

Now, for every edge e = {a, a′} of G(A), define xe = ba
i = ba′

j , where i and

j are such that ea
i = e and ea′

j = e. The equality ba
i = ba′

j follows from the fact
that g is a homomorphism. Now, we have

xea
1

+ · · · + xea
da

≡ 0 (mod 2)

for every a 6= a0, and

xea
1

+ · · · + xea
da

≡ 1 (mod 2)

for a = a0. Since every edge of G(A) has exactly two end-points, adding up all
equations we get

2
∑

e

xe ≡ 1 (mod 2);

a contradiction.

We need an alternative definition of treewidth. Let G = (V, E) be a graph.
We say that two sets B, C ⊆ V touch if either they intersect or there is an
edge of G with an end-point in B and the other in C. A bramble is a collection
B1, . . . , Br of pairwise touching connected subsets of G. A cover of this bramble
is a set of points that intersects every Bi. The order of a bramble is the minimum
size of its covers. Seymour and Thomas [22] proved that a connected graph has
treewidth at least k if and only if it has a bramble of order at least k + 1.

Lemma 2. If the treewidth of A is at least k + 1, then the Duplicator wins the
existential k + 1-pebble game on A and B.

Proof. We start with some definitions. For every walk P = (a0, a1 . . . , ar) in
G(A) that starts at a0 and for every edge e of G(A), we define

1. xP
e = 1 if e appears an odd number of times in P ,

2. xP
e = 0 if e appears an even number of times in P .

Now we define hP (a) = (a, (xP
ea
1

, . . . , xP
ea

da

)) for every a ∈ A.

Claim. If P = (a0, a1, . . . , ar) is a walk in G(A) that starts at a0 and a 6= ar,
then hP (a) belongs to B.

Proof. Suppose that P = (a0, a1, . . . , ar) is a walk in G(A) that starts at a0,
and let a 6= ar. We need to check that

xP
ea
1

+ · · · + xP
ea

da

≡ 0 (mod 2) (1)

if a 6= a0, and
xP

ea
1

+ · · · + xP
ea

da

≡ 1 (mod 2) (2)

if a = a0. Suppose first that a 6= a0. Let i1 < · · · < is be the enumeration of all
positions i in the walk P = (a0, a1, . . . , ar) with ai = a. Since the walk does not
start or end at a, we have 0 < i1 < · · · < is < r. It follows immediately that the
total number of occurrences of edges in the walk that are incident on a is even
(we are using the fact that G(A) has no self-loops so for every 1 ≤ j ≤ r − 1
there exists l such that ij < l < ij+1). Thus, equation (1) holds. Suppose now
that a = a0. Again, let i1 < · · · < is be the enumeration of all positions i in the
walk such that ai = a. Since the walk starts at a0 = a and does not end at a,
we have 0 = i1 < · · · < is < r. It follows immediately that the total number of
occurrences of edges in the walk that are incident on a is odd. Thus, equation
(2) holds.

Claim. Let S ⊆ A, and let P = (a0, a1, . . . , ar) be a walk in G(A) that starts at
a0 and does not end in a point in S. Then, the restriction hP

S of hP to S is a
partial homomorphism from A to B.

Proof. The previous claim guarantees that hP (a) belongs to B for every a ∈
S. We need to check now that for every (n-ary) relation RA

i and any tuple
(b1, . . . , bn) ∈ RA

i such that b1, . . . , bn ∈ S, the tuple (hP (b1), . . . , h
P (bn)) is also

a tuple from RB
i . But this is obvious because for any j and ` if s and t are such

that e
bj
s = eb`

t = {bj, b`}, then trivially xP

e
bj
s

= xP

e
b`
t

= xP
{bj ,b`}

.

Now we can define the winning strategy for the Duplicator in the existential
k+1-pebble game between A and B. Suppose that the treewidth of A is at least
k+1. Let {B1, . . . , Br} be a bramble of A of order at least k+2. It is finally the
time to define a0. Let us fix a0 to be any point of A connected to the bramble.
We define a collection of partial homomorphisms H as follows: for any walk P in
G(A) that starts with a0 and any S ⊆ A such that |S| ≤ k+1 and the last vertex
of P belongs to a bag of the bramble that does not contain any element of S,
we include hP

S into H. By the claims above, each such hP |S is indeed a partial
homomorphism. The election of a0 guarantees that H is nonempty. Conditions
(a),(b) from the definition of a winning strategy can be easily checked. Condition
(a) holds trivially. For (b), let hP

S be any function with |S| ≤ k in H. Hence P
is a walk that starts at a0 and ends at a point, say ar, that sits in a bag Bi that
does not contain any point in S. Now let a ∈ A. Let Bj be a bag of the bramble
that does not contain any point in S′ = S ∪ {a}. Such a bag also exists because
|S′| ≤ k + 1 and the bramble cannot be covered with less than k + 2 points.
Since all pairs of bags of the bramble touch, and since bags are connected, there
must be a walk Q from ar to a point in Bj that runs entirely inside Bi except
for the last point, which lands in Bj . Now we let P ′ be the concatenation of P
with Q. The walk P ′ has the properties we need: it starts at a0 and it ends in a
point that belongs to a bag Bj of the bramble that does not contain any point

in S′. Thus hP ′

S′ belongs to H. Finally, since the only edges that P ′ adds to P
are edges that are entirely inside Bi except for the last that may land inside Bj ,
none of these edges has an end-point in S because both Bi and Bj are S-free. It

follows that xP
e = xP ′

e for every edge e with an end-point in S, so hP ′

(a) = hP (a)
for every a ∈ S.

5 Further Comments and Remarks

If we put Theorem 1 and Theorem 2 together we obtain that A has k-width if
and only if core(A) has treewidth at most k. In turn, it was proved in [6] that for
every fixed k ≥ 1, it is an NP-complete problem to decide if a given structure has
a core of treewidth at most k. This implies that it is an NP-complete problem to
decide if a given structure has k-width. Before our result, it was not even known
whether this problem was decidable. Dually, it is an important open problem
whether it is decidable if a given structure has width-k.

The second remark is about an application of our result to preservation the-
orems in finite model theory. Let us first note that, for a core A of treewidth
at least k, the proof of our main result provides a structure B with the follow-
ing three properties: B → A, A 6→ B, and the Duplicator wins the existential
k-pebble game on A and B. Using these three properties, it is possible to solve
an open problem in [3]. The problem asked whether every sentence of first-
order logic that can be written equivalently as an existential-positive infinitary
sentence with k variables on finite structures is also equivalent to a existential-
positive finite sentence with k variables on finite structures. The construction
above, in combination with Rossman’s Theorem [20], provides the right tool to
establish this preservation theorem. We will provide the details of the proof in
the journal version of this paper.

It would be interesting to see if the construction we give has more applications
in finite model theory. Interestingly, up to now we have used it to establish both
a negative result (limits on the k-consistency algorithm), and a positive result
(a preservation theorem in finite model theory).

References

1. A. Atserias and V. Dalmau. A Combinatorial Characterization of Resolution-
Width. In Proceedings of the 18th Annual IEEE Conference on Computational
Complexity, pages 239-247, Aarhus, Denmark, July 2003.

2. A. Atserias. On digraph coloring problems and treewidth duality. In Proceedings of
the 20th Annual IEEE Simposium on Logic in Computer Science, pages 106–115,
Chicago, USA, June 2005.

3. A. Atserias, A. Dawar, and P. Kolaitis. On Preservation under Homomorphisms
and Unions of Conjunctive Queries. Journal of the ACM, 53(2):208–237, 2006.

4. A. Bulatov. A dichotomy theorem for constraints on a three-element set. J. of the
ACM, 53(1):66–120, 2006.

5. A.A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceed-
ings of the 18th Annual IEEE Simposium on Logic in Computer Science, pages
321–330, Ottawa, Canada, June 2003. IEEE Computer Society.

6. V. Dalmau, Ph.G. Kolaitis, and M.Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite variable logics. In Proceedings of the 8th International Con-
ference on Principles and Practice of Constraint Programming, CP’02, Lecture
Notes in Computer Science, pages 311–326. Springer-Verlag, 2002.

7. R. Dechter. From local to global consistency. Artificial Intelligence, 55(1):87–107,
1992.

8. T. Feder and M.Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
Proceedings of 25th ACM Symposium on the Theory of Computing (STOC), pages
612–622, 1993.

9. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM
Journal of Computing, 28:57–104, 1998.

10. E. Freuder. A Sufficient Condition for Backtrack-Free Search. Jouranl of the ACM,
29(1):24–32, 1982

11. E. Freuder. Complexity of k-tree structured constraint satisfaction problems. In
Proceedings of the 8th National Conference on Artificial Intelligence AAAI-90,
pages 4–9, 1990

12. M. Grohe. The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. In Proceedings of the 44th Annual Simposium on
Foundations of Computer Science, pages 552–561, Cambridge, Massachusets, USA,
October 2003. IEEE Computer Society.

13. P. Hell and Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 2004.

14. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Ser.B, 48:92–110, 1990.

15. P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics, 109(1-3):117–
126, 1992.

16. P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomor-
phisms. Trans. of the AMS, 348(4):1281–1297, 1996.

17. Ph.G. Kolaitis and J. Panttaja. On the Complexity of Existential Pebble Games. In
Proceeding of the 17th International Workshop on Computer Science Logic, pages
314–329, 2003.

18. Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of Datalog: tools and
case study. Journal of Computer and System Sciences, 51(1):110–134, 1995.

19. Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint satisfac-
tion. In Proceedings of the 17th National (US) Conference on Artificial Intelligence,
AAAI’00, pages 175–181, 2000.

20. B. Rossman. Existential Positive Types and Preservation under Homomorphisms.
In Proceedings of the 20th IEEE Symposium on Logic in Computer Science, pages
467-476, 2005.

21. T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symposium on Theory of Computing (STOC’78), pages 216–226, 1978.

22. P. Seymour and R. Thomas. Graph searching, and a min-max theorem for
treewidth. Journal of Combinatorial Theory, Series B, 58:22–23, 1993.

