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Abstract

Let B be a finite, core relational structure
and letA be the algebra associated toB, i.e.
whose terms are the operations on the universe
of B that preserve the relations ofB. We
show that ifA generates a so-called arithmeti-
cal variety thenCSP(B), the constraint satis-
faction problem associated toB, is solvable in
Logspace; in fact¬CSP(B) is expressible in
symmetric Datalog. In particular, we obtain
that if¬CSP(B) is expressible in Datalog and
the relations ofB are invariant under a Malt-
sev operation then¬CSP(B) is in symmetric
Datalog.

1 Introduction and Statement of the
Main Results

Constraint satisfaction problems (orCSPs)
provide a natural and flexible framework to
study the complexity of various combinato-
rial problems arising naturally in optimisa-
tion, graph theory, artificial intelligence and
database theory. Simply put, an instance of
a CSP consists of a finite set of variables to-
gether with constraints on these, and the prob-
lem consists of determining whether values
from a specified domain can be assigned to
the variables to satisfy all constraints. Al-
though the general problem is NP-complete,
restricting the nature of the constraints can
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lead to tractable cases. For convenience, we
shall adopt the standard approach of viewing
these so-called non-uniformCSP’s as homo-
morphism problems: given a finite relational
structureB, let CSP(B) denote the class of all
finite structures that admit a homomorphism to
B. The past few years have witnessed a flurry
of activity in the study of theseCSP’s, fueled
in part by a tantalising conjecture, due to Feder
and Vardi [12], stating that for every structure
B, the problemCSP(B) is either solvable in
polynomial time or NP-complete. The conjec-
ture is known to hold in the 2-element [20] and
3-element [3] cases, and several other special
cases (see [7]). Even though the conjecture
is still open after almost 15 years, remarkable
progress has been made in understanding the
complexity ofCSP(B) thanks to two comple-
mentary approaches that have now come to be
inextricably linked.

The first of these approaches seeks to clas-
sify the CSP’s according to the nature of the
logics required to describe the set of structures
that admit (or do not admit) a homomorphism
to B. In particular, it has been noticed that
a number of tractable cases can be captured
by definability of¬CSP(B) in the database-
inspired query language Datalog. If, further-
more,¬CSP(B) is definable in linear Datalog
then the corresponding problem can be solved
in NL and some evidence was given in [8] that
this condition is in fact necessary and sufficient.
Going further down the hierarchy, symmetric
Datalog is a fragment of linear Datalog that
guarantees that, if¬CSP(B) is definable in it
thenCSP(B) is solvable in Logspace [11]; all
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knownCSP’s in Logspace are of this form. Fi-
nally, it is known that everyCSP which is not
hard for Logspace must be in non-uniformAC0

and in fact has finite duality [15]. It is known
that the above scheme gives a full account of
Datalog and its fragments for BooleanCSP’s
[15].

The second approach associates to every fi-
nite structureB an algebraA = A(B), whose
universeA is that ofB and whose basic op-
erations are those that are compatible with the
relations ofB. Viewed this way, the constraint
relations of theCSP are subuniverses of subal-
gebras of powers ofA, and thus the equational
properties of the algebra control in some sense
the “geometry” of the constraints; the presence
of terms of the algebra obeying stringent identi-
ties, such as a semilattice term for instance, en-
sures that the associatedCSP is tractable (see
[7] for a comprehensive survey.)

Tame Congruence Theory, first developed
in the mid 80’s, is a powerful tool to analyse
equational classes (a.k.a. varieties) generated
by finite algebras [13]. To each finite algebra
is associated a set of among 5types: (1) the
unary type, (2) the affine type, (3) the Boolean
type, (4) the lattice type and (5) the semilattice
type. The typeset of an algebra reflects the lo-
cal behaviour of its polynomial operations; the
typeset of a variety is the union of all type-
sets of its finite algebras, and is an indicator
of how well-behaved the variety is. Four nat-
ural classes of varieties are delineated by the
so-called omitting-types theorems of [13]. As-
suming without loss of generality the structures
involved are cores, the following lists some
consequences on the associatedCSP whose al-
gebraA generates a varietyV(A) whose type-
set contains certain types:

• if V(A) admits type 1, thenCSP(B) is
NP-complete and its complement is not
Datalog definable;

• if V(A) admits type 1 or 2, thenCSP(B)
is modp L-hard for somep and its com-
plement is not Datalog definable;

• if V(A) admits type 1, 2 or 5, then
CSP(B) is P-hard and its complement is
not definable in linear Datalog;

• if V(A) admits type 1, 2, 4 or 5, then
CSP(B) is NL-hard and its complement
is not definable in symmetric Datalog.

It is known that this result essentially gives
the whole picture in the Boolean case (see
[15]); for instance every BooleanCSP whose
variety has typeset{3, 4} has its complement in
linear Datalog and hence is in NL. It is conceiv-
able that this state of affairs could extend to ar-
bitraryCSP’s: in particular, that varieties omit-
ting type 1 should give rise to tractableCSP’s
is the algebraic version of the Feder Vardi di-
chotomy conjecture and was first stated by Bu-
latov, Jeavons and Krokhin in [2]; it was con-
jectured in [16] thatCSP’s whose variety omits
types 1 and 2 should have their complement in
Datalog (thebounded width conjecture).

Early on algebraists recognised the impor-
tance of the nature of the congruence lattices
of algebras in the classification of varieties:
among the chief conditions are congruence-
modularity, -distributivity and -permutability.
It is known that the congruence-permutability
of a variety is characterised by the presence of
a so-calledMaltsev term, i.e. a ternary termm
satisfying the identities

m(y, x, x) ≈ y ≈ m(x, x, y);

in the prototypical case of groups, this is eas-
ily witnessed by the termm(x, y, z) = xy−1z.
CSP’s with a congruence-permutable variety
are solvable in polynomial time [4, 5]; one
of the striking achievements of the algebraic
method is a far-reaching extension of this re-
sult to so-called algebras with few subpowers
[14]. There is a strong link between type-
sets of varieties and their congruence proper-
ties. For instance, it is known that (idempotent,
locally finite) varieties whose typeset is{2, 3}
are precisely those that aren-permutable for
somen ≥ 2, wheren-permutability is a natural
generalisation of congruence (2)-permutability
[13].
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The present paper is a first step in the
direction of a solution to the fourth con-
jecture, namely that if aCSP has a vari-
ety with typeset{3}, then its complement
is definable in symmetric Datalog. A va-
riety V is arithmetical if every algebra in
it is congruence-permutable and congruence-
distributive. Since congruence-distributive va-
rieties omit types 1, 2 (and 5), according to
the bounded width conjecture they should give
rise toCSP’s with complement in Datalog; this
has been verified only in the so-called CD(4)
case [6]. As pointed out earlier, aCSP with
a congruence-permutable variety with typeset
{2, 3} is tractable, but the presence of type
2 prevents its complement being in Datalog.
However if both congruence conditions are
combined, we are able to show much more:

Theorem 1 Let B be a finite, core structure.
If A(B) generates an arithmetical variety then
¬CSP(B) is definable in symmetric Datalog.
In particular, CSP(B) is in Logspace.

We will show that this has the following con-
sequence:

Corollary 2 Let B be a finite, core structure.
If A(B) generates a congruence-permutable
variety and¬CSP(B) is definable in Datalog,
then¬CSP(B) is definable in symmetric Dat-
alog. In particular,CSP(B) is in Logspace.

Assuming the bounded width conjecture is
correct, if aCSP has a type 3 variety then its
complement is in Datalog and the variety isn-
permutable for somen ≥ 2. The corollary
can then be viewed as the casen = 2 towards
showing the general type 3 conjecture.

Algebras that generate arithmetical varieties
include Boolean algebras and Heyting alge-
bras; our result also generalises the case of
quasiprimal algebras first proved in [11].

The next section contains the basic facts
about relational structures and various frag-
ments of Datalog we require; it will be fol-
lowed by an overview of the algebraic results
necessary to state and prove our main theorem
and its corollary.

2 Constraint Satisfaction Problems
and Fragments of Datalog

For basic terminology and notation concern-
ing relational structures we refer the reader to
[17]. Given relational structuresA, B, ... we
denote their respective universes byA, B, ...
Let τ = {R1, . . . , Rn} be a vocabulary and let
A andB beτ -structures. Ahomomorphismf

from A to B is a mapf : A → B such that
f(RA

i ) ⊆ RB
i for every1 ≤ i ≤ n. We write

A → B to indicate that there exists a homo-
morphism fromA to B. A structureB is a
core if the only homomorphisms fromB to it-
self are onto. Given a structureB, CSP(B) de-
notes the class of all similar structuresA such
that A → B; ¬CSP(B) denotes the class of
all A such thatA 6→ B. It is easy to see that
for every finite structureB, there exists a core
B′ such thatCSP(B) = CSP(B′).

For basic facts concerning Datalog and its
relevant fragments we refer the reader to [8, 9,
11, 12]). Fix a vocabularyτ . A Datalog pro-
gram is a finite set of rules of the form

T0 : − T1, . . . , Tn

where each Ti is an atomic formula
R(xi1 , . . . , xik). Then T0 is called the
headof the rule, and the sequenceT1, . . . , Tn

the body of the rule. There are two kinds of
relational predicates occurring in the program:
predicatesR that occur at least once in the
head of a rule are calledintensional database
predicates(IDBs) and are not part ofτ . The
other predicates which occur only in the body
of a rule are calledextensional database
predicatesand must all lie inτ . One special
IDB, which is 0-ary, is thegoal predicateof the
program. Each Datalog program is a recursive
specification of the IDBs, with semantics
obtained via least fixed-points of monotone
operators. The goal predicate is initially set to
false, and the Datalog programacceptsa
τ -structureA if its goal predicate evaluates to
true onA.

For 0 ≤ j ≤ k, a (j, k)-Datalog program
is a Datalog program with at mostj variables
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in the head and at mostk variables per rule. A
Datalog program islinear if every of its rules
has at most one occurrence of an IDB in its
body. Given a rulet of the form

I : − J, T1, . . . , Tn

of a linear Datalog program whereI andJ are
IDB’s, its symmetriccomplementtsym is the
rule

J : − I, T1, . . . , Tn;

if t has no IDB in the body then we lettsym = t.
A linear program is said to besymmetricif it
contains the symmetric complement of each of
its rules. A classC of structures is said to be
definable in (linear, symmetric)(j, k)-Datalog
if there is a (linear, symmetric)(j, k)-Datalog
program which accepts precisely the structures
from C.

We shall require the notion of acanonical
(linear, symmetric)(j, k)-Datalog program for
B. Let τ = {R1, . . . , Rn}. For eachr-ary re-
lation S on B with 1 ≤ r ≤ j, introduce anr-
ary IDB IS . Then the canonical(j, k)-Datalog
program forB involves the IDBsIS and EDBs
R1, . . . , Rn, and contains all the rules with at
mostk variables with the following property: if
everyIS in the rule is replaced byS and every
Rs by RB

s , then every assignment of elements
of B to the variables that satisfies the conjunc-
tion of atomic formulas in the body must also
satisfy the atomic formula in the head. Finally,
introduce one 0-ary IDBG together with the
rule G : − I∅(x1, . . . , xj), and makeG the
goal predicate of the program. Thecanonical
linear (j, k)-Datalog program forB consists
of all linear rules from the canonical program
described above. Finally, define thecanoni-
cal symmetric(j, k)-Datalog program forB as
the largest set of rules from the canonical lin-
ear program which is closed under symmetry.
It was shown in [12] that if¬CSP(B) is de-
finable in (j, k)-Datalog then it is defined by
the canonical(j, k)-Datalog program. The fol-
lowing result was first stated for plain Datalog
in [12]:

Lemma 3 Suppose that¬CSP(B) is definable
in (linear, symmetric)(j, k)-Datalog. Then
¬CSP(B) is precisely the set of structures ac-
cepted by the canonical (linear, symmetric)
(j, k)-Datalog program forB.

We do not include the proof here as it is a
direct adaptation of that of [12]. Although we
shall not make use of Lemma 3 in our proofs
we will need a simple argument that is used in
its proof which we now state and prove. For
every IDBI of any programP, let I(C) be the
relation onC produced by the program at the
end of its run onC.

Lemma 4 Suppose thatA → B. Then for ev-
ery 0 ≤ j ≤ k, the canonical (and hence the
linear, symmetric)(j, k)-Datalog program for
B does not acceptA.

Proof: Since the body of every rule is a prim-
itive positive formula, it is easy to verify that
if f is a homomorphism fromA to B, then
f(I(A)) ⊆ I(B) for every IDBI of P. In par-
ticular, we have thatf(I∅(A)) ⊆ I∅(B) = ∅
henceI∅(A) = ∅ which shows thatP does not
acceptA.

Finally we shall use the following result
from [11]:

Lemma 5 Suppose that¬CSP(B) is definable
in symmetric(j, k)-Datalog. ThenCSP(B) is
in Logspace.

3 Algebraic Preliminaries

For basic algebraic results we refer the
reader to [18]. Afinitary operationf on a set
A is a mapf : An → A for somen ≥ 1, called
thearity of f . An algebrais a pairA = 〈A;F 〉
whereA, theuniverseof A, is a non-empty set
andF is a set of finitary operations onA, called
thebasicor fundamentaloperations ofA.

Let θ be anr-ary relation onA and letf be
an n-ary operation onA. We say thatf pre-
servesθ, (θ is invariant underf ) if, given n tu-
plest1, . . . , tn from R, applyingf to the rows
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of the matrix whose columns are theti yields a
tuple inθ. The set of relations invariant under
all operations inF is denoted byInv(F ), and
the set of operations preserving all relations in
Γ is denoted byPol(Γ).

The algebra associated to a relational struc-
ture B is A(B) = 〈A;Pol(Γ)〉 whereA and
Γ are the universe and the set of basic rela-
tions ofB respectively. If a signature is spec-
ified, then one may define subalgebras, homo-
morphic images and products of algebras. A
variety is a class of similar algebras closed un-
der these three constructions. The varietyV(A)
generatedby an algebraA is the smallest vari-
ety containingA.

A ternary operationp ia a majority opera-
tion if it satisfies the identitiesp(x, x, y) =
p(x, y, x) = p(y, x, x) = x for all x, y; a
ternary operationM is a Maltsevoperation if
it satisfies the identitiesM(y, x, x) = y =
M(x, x, y) for all x, y.

Recall from the introduction that a variety is
arithmeticalif it is congruence-permutable and
congruence-distributive. It will be more conve-
nient for us to use the following characterisa-
tion of arithmetical varieties:

Lemma 6 [19] A variety is arithmetical if and
only if it has a majority term and a Maltsev
term.

We now state some of the basic facts about
arithmetical varieties we will require in the
proof.

Lemma 7 LetΓ be a core structure whose ba-
sic relations are invariant under a majority op-
eration. Then there exists a core relational
structureB (on the same universe asΓ) such
that

1. the basic relations ofB are at most bi-
nary;

2. A(B) = A(Γ);

3. if ¬CSP(B) is in (linear, symmetric) Dat-
alog then so is¬CSP(Γ).

Proof: Let G0 denote the set of basic relations
of Γ. Let G consist of all the relations of ar-
ity at most 2 inInv(Pol(G0)). Because the
relations inG0 are invariant under a majority
operation, it follows thatPol(G0) = Pol(G)
[1]. In particular, the structureB with basic re-
lationsG is a core ifΓ is, andA(Γ) = A(B).
It then follows from Theorem 2.1 of [15] that
¬CSP(B) is in (linear, symmetric) Datalog if
¬CSP(B) is.

A binary relationθ is rectangular if it sat-
isfies the following: if(a, b), (c, b) and (c, d)
are all inθ then so is(a, d). The following is
well-known (and easy to verify):

Lemma 8 If a binary relation is invariant un-
der a Maltsev operation then it is rectangular.

Lemma 9 Let B be a core structure such
that V(A(B)) is congruence-permutable and
¬CSP(B) is in Datalog. ThenV(A(B)) is
arithmetical.

Proof: Since ¬CSP(B) is in Datalog, it
follows from Theorem 4.2 of [16] that
V(A(B)) omits types 1 and 2, and since
this variety is congruence-permutable, it also
omits types 4 and 5 by Theorem 9.14 of
[13]. Congruence-permutability easily implies
congruence-modularity, hence it follows from
Theorems 8.5 and 8.6 of [13] that the variety
is actually congruence-distributive, and thus
arithmetical.

4 Proof of the Main Results

We are now ready to launch into the proof
of Theorem 1. Notice that Corollary 2 follows
immediately from Theorem 1 and Lemma 9.
Let B be a core relational structure such that
V(A(B)) is arithmetical. By Lemma 6 it fol-
lows thatA(B) has both a majority and a Malt-
sev term operation, and hence the basic rela-
tions of B are invariant these operations. We
may assume by Lemma 7 that the basic rela-
tions ofB are at most binary. By Lemma 5 it
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will suffice to prove that¬CSP(B) is in sym-
metric Datalog.

4.1 Some facts about canonical sym-

metric Datalog programs

For any structureB, and for all k > 1
we denote the canonical symmetric(k − 1, k)-
Datalog program forB by Pk

B
(or simply by

Pk if B is clear from the context) and call
it simply the canonical symmetrick-Datalog
programfor B.

Let A be any structure similar toB. If
a1, . . . , as ∈ A and I is an IDB of Pk

B
, we

say thatPk
B

derives I(a1, . . . , as) on A if
(a1, . . . , as) is in the relation defined byI at
the end of the run of the programPk

B
onA.

Every canonical Datalog program consid-
ered in the rest of the section will be forB and
will be run on inputA.

Let R be a relation onB of arity r and let
t be a rule ofPk. Then themultiplication
R · t is a rule defined in the following way: let
y1, . . . , yr be variables that do not occur int.

• If the head oft is IS(x1, . . . , xs) then
the head of R · t is defined to be
IR×S(y1, . . . , yr, x1, . . . , xs)

• The body oft′ is defined differently de-
pending on whether the body oft has or
not an IDB:

– if the body of t does not have any
IDB then the body ofR·t is obtained
by addingIR(y1, . . . , yr) to that oft.

– if the body oft contains some IDB,
say IU (z1, . . . , zu), then the body
of R · t is obtained by replacing
it (in the body of t) by the IDB
IR×U (y1, . . . , yr, z1, . . . , zu)

The following fact about the multiplication
is immediate:

Lemma 10 If R is a relation of arityr andt is
a rule ofPk thenR · t is a rule ofPk+r.

Lemma 11 Letk, r > 0:

1. If Pk+r derives IR(a1, . . . , ar) and Pk

derivesIS(a′1, . . . , a
′
s) thenPk+r derives

IR×S(a1, . . . , ar, a
′
1, . . . , a

′
s)

2. If the Datalog programPk+r derives
IR×S(a1, . . . , ar, a

′
1, . . . , a

′
s) and Pk de-

rives IS(a′1, . . . , a
′
s), then Pk+r derives

IR(a1, . . . , ar).

Proof: (1) For each rulet in the derivation
of IS(a′1, . . . , a

′
s) in Pk, the ruleR · t is in

Pk+r by Lemma 10: the sequence of rules
thus obtained, preceded by the derivation of
IR(a1, . . . , ar) in Pk+r, is a derivation of
IR×S(a1, . . . , ar, a

′
1, . . . , a

′
s).

(2) Let t1, . . . , tm be the sequence of rules
in the derivation ofIS(a′1, . . . , a

′
s) in Pk, and

consider the sequence

(R · tm)sym, . . . , (R · t1)sym.

Using Lemma 10 again, this se-
quence, preceded by the derivation of
IR×S(a1, . . . , ar, a

′
1, . . . , a

′
s) in Pk+r, is a

derivation ofIR(a1, . . . , ar).

4.2 Two lemmas

A path P on a given structureC is any se-
quencec1, . . . , ct of (possibly repeated) ele-
ments ofC. The pathP is acycleif c1 = ct.

Let P = a1, . . . , at, andQ = b1, . . . , bt be
paths of the same length on structuresA and
B, respectively. We will denote the mapping
from {a, a′} to {b, b′} takinga to b anda′ to b′

by a, a′ → b, b′. If t > 1, we say thatQ sup-
ports (or 0-supports)P if, for all 1 ≤ i < t,
the mappingai, ai+1 → bi, bi+1 is a partial ho-
momorphism fromA to B (i.e, a homomor-
phism from the substructure ofA induced by
{ai, ai+1} to B); for t = 1, Q supportsP if the
mappinga1 → b1 is a partial homomorphism
from A to B. Observe that several occurrences
of the same element in the path onA need not
be mapped to the same value inB.

For every elementa in A and for everyn ≥
0 we define a subsetan of B inductively. First,
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a0 is B for all a ∈ A. If n > 0 then an is
defined usingan−1 in the following way: Let
P = a1, . . . , at andQ = b1, . . . , bt be paths on
A andB. We say thatQ (n − 1)-supportsP
if Q supportsP and for every1 ≤ i ≤ t, bi ∈
an−1

i . Let b be an element ofB, thenb ∈ an

if every cycleP on A starting ina is (n − 1)-
supported by some cycleQ onB starting inb.

Although not explicitly stated there, the fol-
lowing result is implicit in [10].

Lemma 12 [10] If all relations of B are bi-
nary and invariant under a majority operation,
and for everya ∈ A, aM+1 6= ∅, whereM is
the cardinality ofB, thenA → B.

Let P = a1, . . . , an be a path onA and let
N ≥ 0. We defineRN

P to be the binary relation
on B that consists of all(b, b′) such that there
exists some pathQ = b1, . . . , bn in B thatN -
supportsP with b1 = b andbn = b′.

Our main result will follow from Lemma 12
if we can show this:

Lemma 13 For everya and every0 ≤ N , (1)
P2+4N

B
derivesIaN (a) on A. Furthermore (2)

for every pathP = a1, . . . , an on A, P5+4N
B

derivesIRN

P

(a1, an) onA.

Indeed, ifN = M + 1 whereM = |B| then
can prove thatP2+4N

B
defines¬CSP(B). By

Lemma 4 it is only necessary to show that if
A is a structure not accepted byP2+4N

B
then

A → B. This is so, because sinceP2+4N
B

de-
rives IaN (a), if aN were empty then the pro-
gram would contain the ruleG : − IaN (x) and
hence it would acceptA, a contradiction. Thus
aN 6= ∅ for everya ∈ A and we are done by
Lemma 12.

4.3 Proof of Lemma 13

Proof:
Let us first show that (1) implies (2).
In what followsK is set to2 + 4N . Asso-

ciated toP we define a collection of paths, that
we call thesymmetric paths ofP . Every such
path is of the formy1, . . . , ym wherey1 = a1

and for every2 ≤ i ≤ m, if yi−1 = aj then
yi ∈ {aj−1, aj+1}.

For every1 ≤ i ≤ n, we define the binary
relationRN

i onB as the union of allRN
P ∗ where

P ∗ ranges over all symmetric paths ofP ending
in ai.

Item (2) follows immediately from the fol-
lowing two claims:

Claim 1 For every2 ≤ i ≤ n, PK+3 derives
IN
Ri

(a1, ai).

Claim 2 RN
n = RN

P .

Proof: (of Claim 1)
We shall need the following construction.

Let C be a structure, letc1, c2 be elements
of C and letx1, x2 be new elements that we
shall regard as variables (of a Datalog pro-
gram). ThenCc1,c2→x1,x2

is the collection of
atomic predicates of the formθ(xi1, . . . , xir )
with i1, . . . , ir ∈ {1, 2} whereθ is in the vo-
cabulary ofC and(ci1 , . . . , cir ) ∈ θC.

We shall prove the claim by induction oni.
Case(i = 2)

Since by (1) PK derives Ia1
N (a1) and

Ia2
N (a2) on inputA, by Lemma 11 (1),PK+1

derivesIaN
1
×aN

2

(a1, a2). Consider now the rule
t with headIRN

2

(x1, x2) and whose body con-
sists ofIaN

1
×aN

2

(x1, x2) in addition to all pred-
icates inAa1,a2→x1,x2

. Since rulet allows one
to deriveIRN

2

(a1, a2) it only remains to show

thatt is a rule ofP3.
We shall start by showing thatt is a rule

of the canonical (not necessarily symmetric)
3-Datalog program. Letb1, b2 ∈ B be such
that the assignmentx1, x2 → b1, b2 satisfies
the body oft. Since the body oft contains
all predicates inAa1,a2→x1,x2

we can conclude
that a1, a2 → b1, b2 is a partial homomor-
phism. Since the body also contains the IDB
IaN

1
×aN

2

(x1, x2) we conclude thatb1 ∈ aN
1 and

b2 ∈ aN
2 . Henceb1, b2 N -supportsa1, a2 and

hence(b1, b2) ∈ RN
2 .

Now let us see that the symmetric comple-
menttsym of t belongs also to the canonical3-
Datalog program. Letb1, b2 ∈ B such that the
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assignmentx1, x2 → b1, b2 satisfies the body
of tsym. Since it containsIRN

2
(x1,x2)

and, by

definition, RN
2 ⊆ aN

1 × aN
2 , we can conclude

that(b1, b2) ∈ aN
1 × aN

2 .
Case(i − 1 ⇒ i)

By (1) and Lemma 11 (1),
PK+1 derives IaN

i−1
×aN

i

(ai−1, ai).
Hence, again by Lemma 11 (1),
IRN

i−1
×aN

i−1
×aN

i

(a1, ai−1, ai−1, ai) is de-

rived by PK+3. Now consider the rulet
with head IRN

i
×aN

i−1
×aN

i

(x1, xi, xi−1, xi)

and whose body consists of
IRN

i−1
×aN

i−1
×aN

i

(x1, xi−1, xi−1, xi) in ad-
dition to all predicates inAai−1,ai→xi−1,xi

.
We shall prove thatt is in PK+3. In fact we

shall show thatt is a rule of the canonical (not
necessarily symmetric)5-Datalog program.

Let b1, bi−1, bi be elements ofB such that
the assignmentx1, xi−1, xi → b1, bi−1, bi sat-
isfies the body oft. Hence(b1, bi−1, bi−1, bi)
is in RN

i−1 × aN
i−1 × aN

i which implies that
(b1, bi−1) ∈ RN

i−1, bi−1 ∈ aN
i−1, andbi ∈ aN

i .
Since (b1, bi−1) ∈ RN

i−1, there exists some
symmetric pathP ∗ associated toP that ends at
ai−1 such that(b1, bi−1) ∈ RN

P ∗ . Hence there
exists a pathQ∗ thatN -supportsP ∗ that starts
at b1 and ends atbi−1.

Consider now the pathsP ′ andQ′ obtained
by adding respectivelyai andbi at the end of
P ∗ andQ∗ respectively. We want to see that
Q′ N -supportsP ′. To this end it is only nec-
essary to verify thatai−1, ai → bi−1, bi is a
partial homomorphism, which follows from the
fact that the body oft contains all predicates in
Aai−1,ai→xi−1,xi

. Consequently, sinceQ′ N -
supportsP ′ then(b1, bi) belongs toRN

i . Hence
(b1, bi, bi−1, bi) ∈ RN

i × aN
i−1 × aN

i and we are
done.

To complete the proof one may show in a
similar vein that the symmetric complement
tsym of t is also in the canonical5-Datalog pro-
gram.

Hence, PK+3 can derive, using rulet,
IRN

i
×aN

i−1
×aN

i

(a1, ai, ai−1, ai). Finally, by
Lemma 11(2) withr = 2 and j = K + 1,

PK+3 derivesIRN
i

(a1, ai).

Proof: (of Claim 2)
Since the set of symmetric paths associated

to P containsP itself we conclude thatRN
P ⊆

RN
n . Every symmetric pathP ∗ = y1, . . . , ym

associated toP can be regarded as a sequence
of segmentsin which the indices are either in-
creasing or decreasing. Formally, asegmentof
P ∗ is a maximal subpathar = yi, yi+1, . . . , yj

of P ∗ such that, for everyi ≤ l ≤ j, yl =
al−i+r (an increasing segment) or for every
i ≤ l ≤ j, yl = ai−l+r (adecreasing segment).

We shall prove thatRN
n ⊆ RN

P by contradic-
tion. Suppose there is a tuple(b, b′) in RN

n not
in RN

P ; let P ∗ be a symmetric path (associated
to P ) ending inan with minimum number of
segments such that(b, b′) ∈ RN

P ∗ . Observe that
the number of segments of a symmetric path is
necessarily odd, and sinceP ∗ 6= P this number
is at least 3. For convenience let the number of
segments ofP ∗ bek + 1 and let the segments
of P ∗ be numbered0, 1, . . . , k; in particular in-
creasing segments are even numbered and de-
creasing segments are odd. Letl be any integer
in 0 ≤ l ≤ k − 2, let aj be the last element
of the l-th segment and letaj′ be the last ele-
ment of the(l + 2)-th segment. We claim that
j′ < j if l is even andj′ > j if l is odd. Notice
that the claim yields an immediate contradic-
tion: we can never reachan if this condition is
satisfied and the number of segments is greater
than 1.

Let us prove the claim by contradiction. Let
l be the smallest index for which the claim is
violated. We shall consider the case wherel is
even, the proof forl odd is similar.

Let P ∗ bey1, . . . , ym. Since(b, b′) ∈ RN
P ∗

there exists a pathQ∗ = b1, . . . , bm that N -
supportsP ∗ with b = b1 andb′ = bm.

Let ai be the first element of the(l + 2)-th
segment (see figure 1). Sincel is evenj > i

and letU be the pathai, ai+1, . . . , aj . We shall
studyRN

U . First observe thatRN
U is obtained

from relations ofB by a sequence of con-
structions involving only cartesian products,

8



projections and equality selection. Hence ifB

is invariant under a Maltsev operationϕ then
so isRN

U (easy exercise). Letai∗ be the first
element of thel-th segment. By the minimality
of l, we have thati > i∗. Hence there isyr0

in
the l-th segment (and only one) withyr0

= ai.
Let yr1

= aj be the last element of thel-th
segment. Hence(br0

, br1
) ∈ RN

U . Let yr2
= ai

be the last element of the(l + 1)-th segment.
Hence(br2

, br1
) ∈ RN

U . Finally, if aj′ is the last
element of the(l + 2)-th segment and by hy-
pothesisj′ ≥ j then there exists some element
yr3

in the (l + 2)-th segment withyr3
= aj .

Hence (br2
, br3

) ∈ RN
U . By Lemma 8 the

relationRN
U is rectangular and hence(br0

, br3
)

is also inRN
U . HenceU is N -supported by

a pathb′i, . . . , b
′
j with b′i = br0

andb′j = br3
.

Consider now the symmetric pathP ′ given by
y1, . . . , yr0

, ai+1, . . . , aj−1, yr3
, . . . , ym.

Path P ′ is N -supported by
b1, . . . , br0

, b′i+1, . . . , b
′
j−1, br3

, . . . , bm. Hence
(b, b′) ∈ RN

P ′ andP ′ has onlyk − 2 segments,
a contradiction. This concludes the proof of
Claim 2 and hence that (1) implies (2).

ai∗ ai∗+1 ai aj aj′

yr0

yr1

yr2

yr3

l

l + 1

l + 2

Figure 1.

Finally we shall prove the Lemma by induc-
tion. Since, as we have just proved (1) implies
(2), we only need to show (1).

The caseN = 0 is trivial, sincea0 = B

and the canonical symmetric2-Datalog pro-

gram contains the rule

IB(x) : true .

Now let us assume that the statement holds
for N − 1 (whereN ≥ 1). For every cycleC,
let us defineSC as the subset ofB that contains
all thoseb such that(b, b) ∈ RN−1

C . Clearly,aN

is the intersection of allSC whereC is a cycle
that starts (and hence ends) ata. Furthermore,
sinceB is finite,aN can be obtained as a finite
intersection ofSC ’s.

Let C be any cycle inA an leta its first ele-
ment. By the inductive hypothesis,I

RN−1

C

(a, a)

is derived byP1+4N . SinceISC
(x) : IRC

(x, x)
is a valid symmetric rule,P1+4N also derives
SC(a).

Let C1, . . . , Cm be a sequence of cycles
starting at the same nodea and let Fm =⋂

1≤i≤m SCi
. We shall show by induction on

m that IFm
(a) is derived byP2+4N . The

casem = 1 follows from the fact thatF1 =
SC1

. For the inductive case let us assume that
IFm−1

(a) is derived byP2+4N . SinceISCm
(a)

is derived byP1+4N we can conclude, from
Lemma 11 (1), thatIFm−1×SCm

(a, a) is derived
by P2+4N . By applying the symmetric com-
plementIFm

(x) : IFm−1×SCm
(x, x) we derive

IFm
(a).
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