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Abstract

Let B be a finite, core relational structure
and letA be the algebra associated B, i.e.
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lead to tractable cases. For convenience, we
shall adopt the standard approach of viewing
these so-called non-uniforr@SP’s as homo-
morphism problems: given a finite relational

whose terms are the operations on the universestructureB, let CSP(B) denote the class of all

of B that preserve the relations dB. We
show that ifA generates a so-called arithmeti-
cal variety thenCSP(B), the constraint satis-
faction problem associated 1, is solvable in
Logspace; in fact-CSP(B) is expressible in
symmetric Datalog. In particular, we obtain
that if ~CSP(B) is expressible in Datalog and
the relations ofB are invariant under a Malt-
sev operation themCSP(B) is in symmetric
Datalog.

1 Introduction and Statement of the
Main Results

Constraint satisfaction problems (6GISPs)
provide a natural and flexible framework to
study the complexity of various combinato-
rial problems arising naturally in optimisa-
tion, graph theory, artificial intelligence and

finite structures that admit a homomorphism to
B. The past few years have witnessed a flurry
of activity in the study of thes€SP’s, fueled

in part by a tantalising conjecture, due to Feder
and Vardi [12], stating that for every structure
B, the problemCSP(B) is either solvable in
polynomial time or NP-complete. The conjec-
ture is known to hold in the 2-element [20] and
3-element [3] cases, and several other special
cases (see [7]). Even though the conjecture
is still open after almost 15 years, remarkable
progress has been made in understanding the
complexity of CSP(B) thanks to two comple-
mentary approaches that have now come to be
inextricably linked.

The first of these approaches seeks to clas-
sify the CSP’s according to the nature of the
logics required to describe the set of structures
that admit (or do not admit) a homomorphism

database theory. Simply put, an instance of to B. In particular, it has been noticed that

a CSP consists of a finite set of variables to-

a number of tractable cases can be captured

gether with constraints on these, and the prob- by definability of ~CSP(B) in the database-
lem consists of determining whether values inspired query language Datalog. |If, further-
from a specified domain can be assigned to more,~CSP(B) is definable in linear Datalog

the variables to satisfy all constraints. Al-

then the corresponding problem can be solved

though the general problem is NP-complete, in NL and some evidence was given in [8] that
restricting the nature of the constraints can this condition is in fact necessary and sufficient.
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Going further down the hierarchy, symmetric
Datalog is a fragment of linear Datalog that
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thenCSP(B) is solvable in Logspace [11]; all



knownCSP’s in Logspace are of this form. Fi- e if V(A) admits type 1, 2 or 5, then
nally, it is known that evenfCSP which is not CSP(B) is P-hard and its complement is
hard for Logspace must be in non-uniforkg not definable in linear Datalog;

and in fact has finite duality [15]. It is known
that the above scheme gives a full account of
Datalog and its fragments for Boole&HSP’s
[15].

The second approach associates to every fi- |t is known that this result essentially gives
nite structureB an algebraA = A(B), whose  the whole picture in the Boolean case (see
universeA is that of B and whose basic op- [15]); for instance every Boolea@'SP whose
erations are those that are compatible with the variety has typesei3, 4} has its complement in
relations ofB. Viewed this way, the constraint  |inear Datalog and hence is in NL. Itis conceiv-
relations of theCSP are subuniverses of subal-  aple that this state of affairs could extend to ar-
gebras of powers of, and thus the equational pjtrary CSP’s: in particular, that varieties omit-
properties of the algebra control in some senseting type 1 should give rise to tractab@SP’s
the “geometry” of the constraints; the presence s the algebraic version of the Feder Vardi di-
of terms of the algebra obeying stringent identi- chotomy conjecture and was first stated by Bu-
ties, such as a semilattice term for instance, en-|atov, Jeavons and Krokhin in [2]; it was con-
sures that the associat€tbP is tractable (see jectured in [16] thaC'SP’s whose variety omits
[7] for a comprehensive survey.) types 1 and 2 should have their complement in

Tame Congruence Theory, first developed Datalog (thebounded width conjectuye
in the mid 80’s, is a powerful tool to analyse Early on algebraists recognised the impor-
equational classes (a.k.a. varieties) generatectance of the nature of the congruence lattices
by finite algebras [13]. To each finite algebra of algebras in the classification of varieties:
is associated a set of amongtypes (1) the among the chief conditions are congruence-
unary type, (2) the affine type, (3) the Boolean modularity, -distributivity and -permutability.
type, (4) the lattice type and (5) the semilattice It is known that the congruence-permutability
type. The typeset of an algebra reflects the lo- of a variety is characterised by the presence of
cal behaviour of its polynomial operations; the a so-calledMaltsev termi.e. a ternary ternmn
typeset of a variety is the union of all type- satisfying the identities
sets of its finite algebras, and is an indicator
of how well-behaved the variety is. Four nat-

ural classes of varieties are delineated by thein the prototypical case of groups, this is eas-
so-called omitting-types theorems of [13]. As- ily witnessed by the term(z, y, 2) = zy 2.
suming without loss of generality the structures csp’s with a congruence-permutable variety
involved are cores, the following lists some gre solvable in polynomial time [4, 5]; one
consequences on the associaté> whose al-  of the striking achievements of the algebraic
gebraA generates a variefy(A) whose type-  method is a far-reaching extension of this re-
set contains certain types: sult to so-called algebras with few subpowers
[14]. There is a strong link between type-
e if V(A) admits type 1, therCSP(B) is sets of varieties and their congruence proper-
NP-complete and its complement is not ties. For instance, it is known that (idempotent,
Datalog definable; locally finite) varieties whose typeset {8, 3}
are precisely those that arepermutable for
e if V(A) admits type 1 or 2, the@SP(B) somen > 2, wheren-permutability is a natural
is mod, L-hard for somep and its com-  generalisation of congruence (2)-permutability
plement is not Datalog definable; [13].

e if V(A) admits type 1, 2, 4 or 5, then
CSP(B) is NL-hard and its complement
is not definable in symmetric Datalog.

m(y,z,r) =y~ m(z,z,y);



The present paper is a first step in the 2 Constraint

direction of a solution to the fourth con-
jecture, namely that if aCSP has a vari-
ety with typeset{3}, then its complement
is definable in symmetric Datalog. A va-
riety V is arithmetical if every algebra in

it is congruence-permutable and congruence-

distributive. Since congruence-distributive va-
rieties omit types 1, 2 (and 5), according to

Satisfaction Problems
and Fragments of Datalog

For basic terminology and notation concern-
ing relational structures we refer the reader to
[17]. Given relational structured, B, ... we
denote their respective universes Hy B, ...
Let = {Ry,..., R,} be avocabulary and let
A andB be 7-structures. Ahomomorphismy

the bounded width conjecture they should give from A to B is a mapf : A — B such that

rise toCSP’s with complement in Datalog; this
has been verified only in the so-called CD(4)
case [6]. As pointed out earlier, @SP with

f(RA) C RB foreveryl < i < n. We write
A — B to indicate that there exists a homo-
morphism fromA to B. A structureB is a

a congruence-permutable variety with typeset coreif the only homomorphisms fronB to it-

{2,3} is tractable, but the presence of type
2 prevents its complement being in Datalog.
However if both congruence conditions are
combined, we are able to show much more:

Theorem 1 Let B be a finite, core structure.

If A(B) generates an arithmetical variety then
-CSP(B) is definable in symmetric Datalog.
In particular, CSP(B) is in Logspace.

We will show that this has the following con-
sequence:

Corollary 2 Let B be a finite, core structure.
If A(B) generates a congruence-permutable
variety and—CSP(B) is definable in Datalog,
then—-CSP(B) is definable in symmetric Dat-
alog. In particular, CSP(B) is in Logspace.

Assuming the bounded width conjecture is
correct, if aCSP has a type 3 variety then its
complement is in Datalog and the varietynis
permutable for somer > 2. The corollary
can then be viewed as the case= 2 towards
showing the general type 3 conjecture.

self are onto. Given a structul, CSP(B) de-
notes the class of all similar structurassuch
that A — B; -CSP(B) denotes the class of
all A such thatA 4 B. It is easy to see that
for every finite structurdB, there exists a core
B’ such thatCSP(B) = CSP(B’).

For basic facts concerning Datalog and its
relevant fragments we refer the reader to [8, 9,
11, 12]). Fix a vocabulary-. A Datalog pro-
gramis a finite set of rules of the form

TO:_T17...7Tn

where each 7; is an atomic formula
R(xi,...,z;). Then Ty is called the
headof the rule, and the sequendg, ..., T,
the body of the rule. There are two kinds of
relational predicates occurring in the program:
predicatesR that occur at least once in the
head of a rule are callemhtensional database
predicates(IDBs) and are not part of. The
other predicates which occur only in the body
of a rule are calledextensional database
predicatesand must all lie inr. One special

Algebras that generate arithmetical varieties IDB, which is O-ary, is thegjoal predicateof the

include Boolean algebras and Heyting alge-

program. Each Datalog program is a recursive

bras; our result also generalises the case ofspecification of the IDBs, with semantics

quasiprimal algebras first proved in [11].

obtained via least fixed-points of monotone

The next section contains the basic facts operators. The goal predicate is initially set to

about relational structures and various frag-

ments of Datalog we require; it will be fol-
lowed by an overview of the algebraic results

fal se, and the Datalog programacceptsa
T-structureA if its goal predicate evaluates to
trueonA.

necessary to state and prove our main theorem For0 < j < k, a(j, k)-Datalog program

and its corollary.

is a Datalog program with at mogtvariables



in the head and at mostvariables per rule. A
Datalog program idinear if every of its rules
has at most one occurrence of an IDB in its
body. Given a rule of the form
I:—JT,...,T,
of a linear Datalog program wheteand.J are
IDB’s, its symmetriccomplementt,., is the
rule

J:=1LT,...,Ty;

if t has no IDB in the body then we l&t,.,, = t.
A linear program is said to beymmetricif it

contains the symmetric complement of each of

its rules. A clas< of structures is said to be
definable in (linear, symmetrid)j, k)-Datalog
if there is a (linear, symmetrid)j, k)-Datalog

Lemma 3 Suppose thatCSP(B) is definable

in (linear, symmetric)(j, k)-Datalog. Then
-CSP(B) is precisely the set of structures ac-
cepted by the canonical (linear, symmetric)
(j, k)-Datalog program forB.

We do not include the proof here as it is a
direct adaptation of that of [12]. Although we

shall not make use of Lemma 3 in our proofs
we will need a simple argument that is used in

its proof which we now state and prove. For
every IDBT of any progranfP, let I(C) be the
relation onC' produced by the program at the
end of its run orC.

Lemma 4 Suppose thaA — B. Then for ev-
ery0 < j < k, the canonical (and hence the
linear, symmetric)j, k)-Datalog program for

program which accepts precisely the structures B does not accepA.

from C.

We shall require the notion of eanonical
(linear, symmetric) j, k)-Datalog program for
B. Lett = {Ry,..., R,}. For eachr-ary re-
lation S on B with 1 < r < j, introduce anr-
ary IDB Is. Then the canonicdlj, k)-Datalog
program forB involves the IDBs/s and EDBs
Ry,...,R,, and contains all the rules with at
mostk variables with the following property: if
every Ig in the rule is replaced by and every
R, by RB, then every assignment of elements
of B to the variables that satisfies the conjunc-
tion of atomic formulas in the body must also
satisfy the atomic formula in the head. Finally,
introduce one O-ary IDB~ together with the
rule G : — Iy(x1,...,z;), and makeG the
goal predicate of the program. Tlwanonical
linear (j,k)-Datalog program foB consists
of all linear rules from the canonical program
described above. Finally, define tlwanoni-
cal symmetriqj, k)-Datalog program foB as
the largest set of rules from the canonical lin-
ear program which is closed under symmetry.
It was shown in [12] that iF=CSP(B) is de-
finable in (4, k)-Datalog then it is defined by
the canonicalj, k)-Datalog program. The fol-
lowing result was first stated for plain Datalog
in [12]:

Proof: Since the body of every rule is a prim-
itive positive formula, it is easy to verify that
if fis a homomorphism fromA to B, then
f(I(A)) C I(B) forevery IDBI of P. In par-
ticular, we have thaf (I3(A)) C Ip(B) = 0
hencely(A) = () which shows thaP does not
acceptA. |

Finally we shall use the following result
from [11]:

Lemma 5 Suppose thatCSP(B) is definable
in symmetric(j, k)-Datalog. ThenCSP(B) is
in Logspace.

3 Algebraic Preliminaries

For basic algebraic results we refer the
reader to [18]. Afinitary operationf on a set
Aisamapf : A" — Aforsomen > 1, called
thearity of f. An algebrais a pairA = (A; F)
where A, theuniverseof A, is a non-empty set
andF is a set of finitary operations o#, called
the basicor fundamentabperations of.

Let # be anr-ary relation onA and letf be
ann-ary operation onA. We say thatf pre-
served, (6 is invariantunder f) if, given n tu-
plesty,...,t, from R, applying f to the rows



of the matrix whose columns are theyields a Proof: Let Gy denote the set of basic relations
tuple ind. The set of relations invariant under of I'. Let G consist of all the relations of ar-
all operations inF' is denoted byinu(F'), and ity at most 2 inInv(Pol(Gy)). Because the
the set of operations preserving all relations in relations inGy are invariant under a majority
I' is denoted byPol(T). operation, it follows thatPol(Gy) = Pol(G)
The algebra associated to a relational struc- [1]. In particular, the structur® with basic re-
ture B is A(B) = (4; Pol(T")) where A and  lationsG is a core ifT" is, andA(T") = A(B).
I" are the universe and the set of basic rela- It then follows from Theorem 2.1 of [15] that
tions of B respectively. If a signature is spec- —CSP(B) is in (linear, symmetric) Datalog if
ified, then one may define subalgebras, homo-—-CSP(B) is. |
morphic images and products of algebras. A
varietyis a class of similar algebras closed un- A binary relationé is rectangularif it sat-

der these three constructions. The varigty) isfies the following: if(a,b), (c¢,b) and(c,d)
generatedoy an algebra\ is the smallest vari- are all inf then so is(a,d). The following is
ety containingA. well-known (and easy to verify):

A ternary operatiorp ia a majority opera- . S
tion if it satisfies the identitiep(z,z,y) = Lemma 8 If a binary relation is invariant un-

p(z,y,2) = ply,z,z) = =z for all z,y; a  deraMaltsev operation then itis rectangular.

ternary operationV/ is a Maltsevoperation if
it satisfies the identities\/ (y,z,z) = y =
M(x,z,y) forall z,y.

Recall from the introduction that a variety is
arithmeticalif it is congruence-permutable and
congruence-distributive. It will be more conve- pyoof:  Since ~CSP(B) is in Datalog, it
nient for us to use the following characterisa- tgllomws from Theorem 4.2 of [16] that

tion of arithmetical varieties: V(A(B)) omits types 1 and 2, and since

o o this variety is congruence-permutable, it also
Lemma 6 [19] A variety is arithmetical ifand  its types 4 and 5 by Theorem 9.14 of
only if it has a majority term and a Maltsev 73] congruence-permutability easily implies
term. congruence-modularity, hence it follows from

Theorems 8.5 and 8.6 of [13] that the variety

We now state some of the basic facts about s aeqyally congruence-distributive, and thus
arithmetical varieties we will require in the

arithmetical. ]
proof.

Lemma9 Let B be a core structure such
that V(A(B)) is congruence-permutable and
-~CSP(B) is in Datalog. ThenV(A(B)) is
arithmetical.

Lemma 7 LetI be a core structure whose ba- 4 Proof of the Main Results
sic relations are invariant under a majority op-
eration. Then there exists a core relational
structure B (on the same universe &3 such
that

We are now ready to launch into the proof
of Theorem 1. Notice that Corollary 2 follows
immediately from Theorem 1 and Lemma 9.
1. the basic relations oB are at most bi- L€t B be'a core relgtional structure su_ch that

nary; V(A(B)) is arithmetical. By Lemma 6 it fol-

lows thatA (B) has both a majority and a Malt-

2. A(B) = A(ID); sev term operation, and hence the basic rela-
tions of B are invariant these operations. We

3. if =CSP(B) is in (linear, symmetric) Dat-  may assume by Lemma 7 that the basic rela-
alog then so is»CSP(T"). tions of B are at most binary. By Lemma 5 it



will suffice to prove that-CSP(B) is in sym-
metric Datalog.

4.1 Some facts about canonical sym-
metric Datalog programs

For any structureB, and for allk > 1
we denote the canonical symmettic— 1, k)-
Datalog program folB by P& (or simply by
P if B is clear from the context) and call
it simply the canonical symmetrid:-Datalog
programfor B.

Let A be any structure similar t@B. If

ai,...,as € AandI is an IDB of PE, we
say thatPg derives(ai,...,as) on A if
(ai1,...,as) is in the relation defined by at

the end of the run of the progra??,’g OnA.
Every canonical Datalog program consid-
ered in the rest of the section will be f& and
will be run on inputA.
Let R be a relation onB of arity » and let
t be a rule of Pk, Then themultiplication
R -t is a rule defined in the following way: let
y1i,. .., be variables that do not occurin

e If the head oft is Ig(xq,...,xs) then
the head of R - ¢t is defined to be
IRXS(ylu"'7y1“7x17"'7x8)

e The body oft’ is defined differently de-
pending on whether the body oéfhas or
not an IDB:

— if the body oft¢ does not have any
IDB then the body ofR-¢ is obtained
by addinglz(y1, - - -, y,) to that oft.

— if the body oft contains some IDB,
say Iy(z1,...,2y), then the body
of R -t is obtained by replacing
it (in the body oft) by the IDB

IRxv (Y1, -3 Yry 215+ -+ 5 2u)

The following fact about the multiplication
is immediate:

Lemma 10 If R is a relation of arityr andt is
arule of P* thenR - t is a rule of P**,

Lemma 11 Letk,r > 0:

1. If Pk derives Ig(ai,...,a,) and P*
derivesIs(da}, ..., a.) thenP*+" derives

Ipxs(ai,...,ap,a},...,ad})

rs

2. If the Datalog programP**" derives

Ipxs(ay,...,a.,dj,... a.) and P* de-
rives Is(a),...,d.), then P+ derives
IR(alv"'vaT)'

Proof: (1) For each rulet in the derivation
of Is(a},...,a.) in P* the ruleR - t is in
PE+T by Lemma 10: the sequence of rules
thus obtained, preceded by the derivation of
Ig(ai,...,a;) in Pk is a derivation of
Ipxs(ai,...,ap,d},...,d.).

(2) Lettq,...,t, be the sequence of rules
in the derivation oflg(d/, ..., a.) in P*, and

» s
consider the sequence

(R tm)sym, - (R t1)sym-
Using Lemma 10 again, this se-
guence, preceded by the derivation of
Ipxs(a,...,ar,ady,...,al) in P is a
derivation ofIp(aq, ..., a;). [ |

4.2 Two lemmas

A path P on a given structureC is any se-
guencecy,...,c; of (possibly repeated) ele-
ments ofC'. The pathP is acycleif ¢; = ¢;.

LetP = aq,...,a, andQ =by,...,b be
paths of the same length on structusksand
B, respectively. We will denote the mapping
from {a,a’} to {b,b'} takinga to b anda’ to &/
by a,a’ — b,v'. If t > 1, we say that) sup-
ports (or 0-supports)P if, for all 1 < i < ¢,
the mapping:;, a;+1 — b;, b;11 is a partial ho-
momorphism fromA to B (i.e, a homomor-
phism from the substructure @f induced by
{ai,ai+1} toB); fort = 1, Q supportsP if the
mappinga; — by is a partial homomorphism
from A to B. Observe that several occurrences
of the same element in the path dnneed not
be mapped to the same valueBn

For every element in A and for everyn >
0 we define a subset® of B inductively. First,



a’isBforalla € A. If n > 0thena” is
defined using:"~! in the following way: Let
P=a,...,a; andQ = by, ..., b; be paths on
A andB. We say that) (n — 1)-supportsP

if @ supportsP and for everyl < i <t b; €
a?'. Letb be an element oB, thenb € a”

if every cycle P on A starting ina is (n — 1)-
supported by some cyclg on B starting inb.

Although not explicitly stated there, the fol-

lowing result is implicit in [10].

Lemma 12 [10] If all relations of B are bi-
nary and invariant under a majority operation,
and for everya € A, aM*! £ (), whereM is
the cardinality of B, thenA — B.

LetP = aq,...,a, be a path oA and let
N > 0. We defineRY to be the binary relation
on B that consists of al(b,?’) such that there
exists some patly) = by,...,b, in B that V-
supportsP with b, = b andb, = V'.

Our main result will follow from Lemma 12
if we can show this:

Lemma 13 For everya and every0 < N, (1)
PEHY derivesI,y (a) on A. Furthermore (2)
for every pathP = ay,...,a, on A, Pg™V
derivesIRg(al, ap) OnA.

Indeed, ifN = M + 1 whereM = |B| then
can prove thaPZ " defines~CSP(B). By
Lemma 4 it is only necessary to show that if
A is a structure not accepted B then
A — B. This is so, because sing™" de-
rives I~ (a), if ™ were empty then the pro-
gram would contain the rul€' : — I~ (z) and
hence it would accepA, a contradiction. Thus
aN £ () for everya € A and we are done by
Lemma 12.

4.3 Proof of Lemma 13

Proof:

Let us first show that (1) implies (2).

In what follows K is set to2 + 4N. Asso-
ciated toP we define a collection of paths, that
we call thesymmetric paths ofP. Every such
path is of the formy, ..., y,, wherey; = a;

and for every2 < i < m, if y,_; = a; then
yi € {aj-1,a541}

For everyl < ¢ < n, we define the binary
relation R on B as the union of alRY. where
P* ranges over all symmetric paths Bfending
in a;.

Item (2) follows immediately from the fol-
lowing two claims:

Claim 1 For every2 < i < n, PX+3 derives
IIJ{ (al, ai).

Claim2 RY = RY.

Proof: (of Claim 1)

We shall need the following construction.
Let C be a structure, lety,co be elements
of C' and letxq, 2o be new elements that we
shall regard as variables (of a Datalog pro-
gram). ThenC,, ¢,—.z,.z, IS the collection of
atomic predicates of the form(z;,,...,x;,.)
with 41,...,4, € {1,2} whered is in the vo-
cabulary ofC and(c;,, ..., c;, ) € 6C.

We shall prove the claim by induction @n
Case(i = 2)

Since by (1) PX derives I, ~(a;) and
I,,~ (a2) oninputA, by Lemma 11 (1)pE+1
derives! v, .~ (a1, az). Consider now the rule
t with head! RY (z1,x2) and whose body con-
sists of/, v v (1, z2) in addition to all pred-
icates iNA,, q,—z,.2.- Since rulet allows one
to deriveIRév(al, az) it only remains to show

thatt is a rule ofP3.

We shall start by showing thdtis a rule
of the canonical (not necessarily symmetric)
3-Datalog program. Leby,b, € B be such
that the assignment;,xo — b1, by satisfies
the body oft. Since the body ot contains
all predicates iM , 4,2, 2, We can conclude
that a;,as — b1,by is a partial homomor-
phism. Since the body also contains the IDB
IV ol (z1,72) we conclude tha; € o} and

by € al. Henceb, by N-supportsay,as and
hence(by, b2) € RY.

Now let us see that the symmetric comple-
menttg,, of ¢ belongs also to the canonica
Datalog program. Lel;, b, € B such that the



assignmentri, xo — by, by satisfies the body
of tsym. Since it containspy(,, .,y and, by
definition, RY C o) x al¥, we can conclude
that(bl,bg) € a{v X aév.
Case(i— 1 = i)

By (1 and Lemma 11 (1),

PKJrl derives IazN_1><azN (ai_l, a,»).
Hence, again by Lemma 11 (1),
IRN oV v (01,Gi-1,ai-1,0;) i de-

rived by PE+3. Now consider the rulet
with head IRfoQf.V_IXaZI.V(xI%Civ332’—17332’)
and whose body consists of
IRfV_IXaZI.V_1><afV(x17xi—hxi—bxi) in ad-
dition to all predicates i\, | o, —z; 1,2;-

We shall prove that is in PX+3, In fact we
shall show that is a rule of the canonical (not
necessarily symmetricy-Datalog program.

Let b1, b;_1,b; be elements ofB such that
the assignmenty, z;_1,x; — b1,b;_1,b; sat-
isfies the body ot. Hence(by,b;—1,b;—1,b;)
is in RY, x a¥, x ¥ which implies that
(bl,bifl) S Ri]\ll, bi_1 € al-]\ll, andb; € CLZN.
Since (b1,b;—1) € RY,, there exists some
symmetric pathP* associated t@ that ends at
a;—1 such that(by,b,—1) € RY.. Hence there
exists a patlQ* that N-supportsP* that starts
atb; and ends ab;_;.

Consider now the pathB’ andQ’ obtained
by adding respectively,; andb; at the end of
P* and Q* respectively. We want to see that
Q' N-supportsP’. To this end it is only nec-
essary to verify that; _1,a; — b;_1,b; is a
partial homomorphism, which follows from the
fact that the body of contains all predicates in
Ay, | ai—a_ 1.2 CoOnsequently, sincg’ N-
supportsP’ then(by, b;) belongs takY. Hence
(b1,biybi—1,b;) € RY x al¥ | x a and we are
done.

To complete the proof one may show in a
similar vein that the symmetric complement
tsym Of t is @lso in the canonical-Datalog pro-
gram.

Hence, PX+3 can derive, using rulet,
IRivxaﬁlxaN(al,ai,ai,l,ai). FinaIIy, by

%

Lemma 11(2) withr = 2 andj = K + 1,

PpE+3 deriveslpx (a1, a;).

Proof: (of Claim 2)

Since the set of symmetric paths associated
to P containsP itself we conclude thaRg -
RYN. Every symmetric patiP* = yi,...,ym
associated td® can be regarded as a sequence
of segmentsn which the indices are either in-
creasing or decreasing. Formallysegmenbf
P* is a maximal subpath, = y;, yiy1,...,y;
of P* such that, for every < I < j, 5 =
a;—i+r (a@n increasing segmentor for every
1 <1<7j,y1 = a;_1+, (adecreasing segment

We shall prove thak?Y C RY by contradic-
tion. Suppose there is a tuplg, ') in RY not
in Rﬁ ; let P* be a symmetric path (associated
to P) ending ina,, with minimum number of
segments such thé, v') € RY.. Observe that
the number of segments of a symmetric path is
necessarily odd, and siné& # P this number
is at least 3. For convenience let the number of
segments of* bek + 1 and let the segments
of P* be numbered, 1,. .., k; in particular in-
creasing segments are even numbered and de-
creasing segments are odd. Léke any integer
in0 <1 <k —2,leta; be the last element
of the [-th segment and let;: be the last ele-
ment of the(! + 2)-th segment. We claim that
j' < jif lisevenand’ > jif [ is odd. Notice
that the claim yields an immediate contradic-
tion: we can never reach, if this condition is
satisfied and the number of segments is greater
than 1.

Let us prove the claim by contradiction. Let
[ be the smallest index for which the claim is
violated. We shall consider the case whére
even, the proof fot odd is similar.

Let P* beyi,...,ym. Since(b,t') € RY.
there exists a patl®* = bq,...,b,, that N-
supportsP* with b = b; andb’ = b,,.

Let a; be the first element of th@ + 2)-th
segment (see figure 1). Sintés evenj > i
and letU be the pathu;, a; 1, . .., a;. We shall
study RY. First observe thaR’} is obtained
from relations of B by a sequence of con-
structions involving only cartesian products,



projections and equality selection. Hencdif
is invariant under a Maltsev operatign then
so is RY (easy exercise). Let;- be the first
element of thé-th segment. By the minimality
of /, we have that > *. Hence there ig;, in
the [-th segment (and only one) with, = a;.
Let y,, = a; be the last element of theth
segment. Hencé,, b,,) € RY. Lety,, = a;
be the last element of th@ + 1)-th segment.
Hence(b,,, b, ) € RY. Finally, if a; is the last
element of thgl + 2)-th segment and by hy-
pothesis;’ > j then there exists some element
yr, in the (I + 2)-th segment withy,, = a;.
Hence (b,,,b,,) € RY. By Lemma 8 the
relation RY is rectangular and hendé,,, b,.,)
is also inRY. HenceU is N-supported by
a patht;, ..., b, with b; = b,, andb; = by,.
Consider now the symmetric paf¥ given by

Y1y oo 5 Yrgy Q41,5 - - - 7aj717y7“37 sy Yme
Path P is N-supported by
bl,...,bro,bgH,...,b;_l,brg,...,bm. Hence

(b,1') € RY, and P’ has onlyk — 2 segments,
a contradiction. This concludes the proof of
Claim 2 and hence that (1) implies (2).

JrgeeL i o/ ¢
U I
- Yry
N I[+1
\\\\; \Z/j”ﬂ l + 2

Figure 1.

Finally we shall prove the Lemma by induc-

tion. Since, as we have just proved (1) implies

(2), we only need to show (1).
The caseN = 0 is trivial, sincea" = B
and the canonical symmetriz-Datalog pro-

gram contains the rule
Ip(z): true .

Now let us assume that the statement holds
for N — 1 (whereN > 1). For every cycleC,
let us defineS¢ as the subset dB that contains
all thoseb such thatb, b) € RN '. Clearly,a™
is the intersection of alb- whereC' is a cycle
that starts (and hence ends)atFurthermore,
sinceB is finite, «”¥ can be obtained as a finite
intersection ofSy’s.

Let C' be any cycle inA an leta its first ele-
ment. By the inductive hypothesiBRgfl (a,a)
is derived byP' 4V Sincels,.(z) : Ir, (v, 7)
is a valid symmetric ruleP+*" also derives
Sc(a).

Let 4,...,C,, be a sequence of cycles
starting at the same node and let F;
Ni<i<m Sc;- We shall show by induction on
m that I, (a) is derived byP?t4N.  The
casem = 1 follows from the fact thatt;
Sc,. For the inductive case let us assume that
Ip,._, (a) is derived byP?™*V  Sincels,, (a)
is derived byP'+*N we can conclude, from
Lemmall (1), thaly, _, s, (a,a)isderived
by P2+4N . By applying the symmetric com-
plementir, (z) : IF,,_,xsc,, (v, x) we derive
Ir, (a).
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