
Descriptive complexity of list H-coloring problems
in logspace: a refined dichotomy

Victor Dalmau∗, László Egri†, Pavol Hell‡, Benoı̂t Larose§ and Arash Rafiey¶
∗Universitat Pompeu Fabra, Spain

Email: victor.dalmau@upf.edu
†Concordia University, Canada

Email: laszlo.egri@mail.mcgill.ca
‡Simon Fraser University, Canada

Email: pavol@sfu.ca
§Concordia University, Canada

Email: benoit.larose@concordia.ca
¶Indiana State University

Email: arash.rafiey@indstate.edu

Abstract—The Dichotomy Conjecture for constraint satisfac-
tion problems (CSPs) states that every CSP is in P or is NP-
complete (Feder-Vardi, 1993). It has been verified for conservative
problems (also known as list homomorphism problems) by A.
Bulatov (2003). Egri et al. (SODA 2014) augmented this result
by showing that for digraph templates H, every conservative CSP,
denoted LHOM(H), is solvable in logspace or is hard for NL. A
conjecture of Larose and Tesson from 2007 forecasts that when
LHOM(H) is in logspace, then in fact, it falls in a small subclass of
logspace, the set of problems expressible in symmetric Datalog.
The present work verifies the conjecture for LHOM(H) (and,
indeed, for the wider class of conservative CSPs with binary
constraints), and by so doing sharpens the aforementioned di-
chotomy. A combinatorial characterization of symmetric Datalog
provides the language in which the algorithmic ideas of the paper,
quite different from the ones in Egri et al., are formalized.

I. INTRODUCTION

A. Fixed template CSPs

In the mid 1990’s, in a pair of seminal papers, P. Jeavons
[1], and T. Feder and M. Vardi [2], [3] laid the foundation for a
program that has oriented much of the theoretical work on the
complexity of constraint satisfaction problems (CSP) to this
day. Inspired by the works cited above, a series of precise con-
jectures relating the computational complexity of CSPs to their
expressibility in various logics and to the closure properties
of constraints under operations was proposed [4], [5] [6]. By
importing powerful techniques from universal algebra to the
field of CSP, these works shed new light on computational and
descriptive complexity issues, and in general, led to a deeper
understanding of fixed-template CSPs. Since several natural
problems complete for standard complexity classes such as P,
NL and L are easily phrased as CSPs, the above results are of
general interest in the theory of computation.

A constraint satisfaction problem consists of a finite set of
variables, a finite set of constraints on these, and the problem
is to determine whether there exists an assignment of values to
the variables that satisfies all constraints. Although the general
problem is NP-complete, restricting the available constraints

may lead to a tractable problem; thus one can parametrise
the CSP by a constraint language (also called template), and
ask for which languages the CSP is tractable, or solvable
with space restrictions, expressible in various logics, and so
on. An often convenient way of reformulating this problem
is through relational structures and homomorphisms: given
a fixed structure H (essentially equivalent to a constraint
language), CSP(H) is the problem of deciding, given a
structure A of the same signature as H, whether there exists
a homomorphism from A to H or not. Equivalently, one
may view CSP(H) as the problem of determining if a given
primitive positive formula is satisfiable in H. Jeavons [1] was
the first to notice that, in Schaefer’s generalised satisfiability
result classifying all CSPs on 2-element templates as tractable
or NP-complete [7], the template associated to tractable CSPs
had a “nice” (in some precise technical sense) underlying
algebraic structure. Building on this, Bulatov, Jeavons and
Krokhin [4] extended Feder and Vardi’s dichotomy conjecture
by proposing a precise algebraic criterion to separate the
tractable and hard cases: the existence of operations preserving
the constraints and obeying certain “nice” identities should
guarantee tractability.

B. Expressibility of fixed-template CSPs in various logics

Descriptive complexity aims to link the computational com-
plexity of a problem with its definability in various logics.
For example, it is known that any first-order definable class
of structures belongs to the complexity class AC0 (see [8]).
Therefore showing that a CSP is definable with an FO formula
also establishes that the CSP is in AC0. Defining CSPs using
certain logics is not merely a tool to show membership in var-
ious complexity classes, but it also deepens our understanding
of these problems. For example, studying the class of CSPs
definable in FO has led to many elegant characterisations of
this class (see [9], [10], [11], [12]), one of them being that
these are precisely the CSPs which have finite duality.

Datalog is a logic programming language introduced in
the 70s. To this day, it has had countless applications in
computer science, e.g. in data integration, networking, cloud
computing, etc. Roughly speaking, a Datalog program takes
as input finitely many finitary relations over a fixed universe
(so-called EDBs), and defines new relations (IDBs) over the
same universe using primitive positive rules and closure under
fixed points. (One may view a Datalog program as defining
a Boolean query if some chosen 0-ary IDB is empty or not.)
For any Datalog program, it can be decided in polynomial
time whether it accepts or rejects a given input structure.
In their pioneering work ([2], [3]), Feder and Vardi showed
that not all tractable CSPs are expressible in Datalog (e.g.
systems of linear equations on a finite field), and therefore
asked the question which CSPs are. Already implicit in the
same paper, there is a conjecture relating properties of the
template H and expressibility of the CSP in Datalog (see [13]
for details). Following Bulatov, Jeavons and Krokhin’s, and
Feder and Vardi’s lead, Larose and Zádori [5] conjectured
a precise algebraic criterion characterizing CSP’s expressible
in Datalog. Confirming the deep connection between the
expressibility of the CSP in Datalog and the structure of its
underlying algebra, the conjecture was proved by Barto and
Kozik in 2009 [14]. In fact, if this criterion is not met, then
by a result of Atserias, Bulatov and Dawar [15], the CSP is
not even definable in infinitary logics with counting.1

Two fragments of Datalog are particularly important when
studying the complexity of CSPs: by restricting the presence
of auxiliary relations (IDBs) to a single occurrence in the body
of each rule, one obtains linear Datalog; this restriction allows
us to evaluate such a program in non-deterministic logspace. If
one further requires that the program be closed under (purely
syntactic) symmetry of rules, one obtains so-called symmetric
Datalog [17]. A consequence of this symmetry is that these
programs can be evaluated in deterministic logspace.2 Larose
and Tesson [6] conjectured precise identities, similar in flavour
to those describing Datalog, that capture CSPs definable in
linear (resp. symmetric) Datalog; if these conjectures hold they
would present a complete picture of the Datalog hierarchy for
CSPs. Furthermore they conjectured that all CSPs solvable in
NL (L) are expressible in linear (resp. symmetric) Datalog
(under standard complexity theoretic assumptions, such as
P 6= NL). Larose and Tesson confirmed all the above
conjectures in the 2-element case, and various other special
cases have also been verified [19], [20]. It should be noted that
a result of Bulin et al [21] reduces all the above conjectures
to the case where the template of the CSP is a digraph. 3

1It turns out that the class of CSPs definable in Datalog is quite robust,
and coincides with the class of CSPs solvable by poly-size monotone circuits
[13], and also those admitting a robust scheme of approximation [16].

2Using Reingold’s breakthrough result that undirected reachability is in
logspace [18].

3A. Kazda has recently announced a proof of the symmetric Datalog
conjecture under the hypothesis that the CSP is solvable in linear Datalog,
effectively reducing the symmetric Datalog conjecture to the linear one.

C. List-Homomorphism Problems

The list-homomorphism problem is a natural restriction of
the CSP, where each variable is constrained to take its values
in a prescribed list of values; these problems have been widely
studied in the context of graphs as list H-colouring problems
(see for instance [22], [23], [24] and also [25], [26]). Given
a target structure H, the list-homomorphism problem for H
takes as input a structure A together with a list L(a) ⊆ H for
each a ∈ A; one must decide if there exists a homomorphism
f from A to H that respects every list, i.e. such that f(a) ∈
L(a) for all a ∈ A. These so-called conservative CSPs have
attracted a great deal of attention as a good testing ground for
the various conjectures: the algebraic dichotomy conjecture is
known to hold here [27] but, with the exception of graphs
[20], the refined conjectures of [6] are still open. When the
underlying structure is a digraph, partial results are known:
Hell and Rafiey [24] showed that the tractable cases of the list-
homomorphism problem on digraph targets are all solvable in
Datalog, a result generalised by Kazda to all structures with
at most binary relations [28].

D. Summary of results and organisation of the paper

Datalog, linear Datalog, and symmetric Datalog have been
extensively studied (see, e.g. [29], [30], [33]) and each can
be described in terms of dualities (bounded tree-, path-,
and symmetric pathwidth duality, respectively). Furthermore,
elegant and useful pebble game descriptions (see [31]) are
available for Datalog and linear Datalog. Unfortunately, no
such pebble game is available for symmetric Datalog. In the
present paper, we introduce a simple and natural combinatorial
characterisation of symmetric Datalog that serves as the lan-
guage in which our proofs are formalized. We work with the
notion of k-canonical symmetric Datalog program (see section
V); it is known that if CSP(H) is decided by some symmetric
Datalog program, then it is in fact decided by the k-canonical
symmetric Datalog program for some k. Roughly speaking,
a k-walk in a structure A is a finite sequence of at most
k-element substructures (“bags”) of A. Imagine zigzagging
back and forth along such a walk from its first bag to the
last, obtaining a new walk; we call such a walk a zigzag-
expansion. A realisation of such a zigzag-expansion Z is a
sequence of homomorphisms, one from each bag of Z to H,
such that homomorphisms for consecutive bags coincide on
the intersection of the bags. We argue that the k-canonical
symmetric Datalog program derives the goal predicate on A
if and only if there exists a k-walk on A such that no zigzag
expansion of this walk is realisable in H (Lemma 2).

We believe that the simplicity and flexibility of this char-
acterisation makes it a powerful tool to show that a given
CSP is definable in symmetric Datalog. To illustrate this
we proceed to apply our result to prove that the symmetric
Datalog conjecture holds for list homomorphism problems on
templates that have at most binary relations (Theorem 1). Since
membership of a list homomorphism problem in symmetric
Datalog is a much stronger statement than membership of that
list homomorphism problem in logspace, our results improve

and sharpen the dichotomy proved in [32], stating that the list
homomorphism for digraph templates is either in L or hard for
NL. Furthermore, our results generalize [32] from digraphs
to relational structures that have at most binary relations.
As a consequence, we obtain equivalent characterisations of
these CSPs in logical, algebraic and graph-theoretic terms (for
digraphs).

Here is the overall structure of the paper: sections II and
III contain preliminary results and terminology, and section
IV presents the basics on Datalog and its fragments. Section
V is devoted to our combinatorial characterisation of CSPs
describable in symmetric Datalog, and section VI applies
our main result to list homomorphism problems on templates
with at most binary relations. To avoid disrupting the flow
of our presentation, some technical considerations have been
relagated to an appendix (section VII).

II. BASIC DEFINITIONS

Let A be a finite set. A k-ary tuple (a1, . . . , ak) over A
is any element of Ak. We shall usually use boldface letters
to denote tuples of any length. If a = (a1, . . . , ak) is a tuple
and f is a mapping whose domain contains {a1, . . . , ak} we
write f(a) to indicate the tuple, (f(a1), . . . , f(ak)), obtained
by applying f to a component-wise. A k-ary relation, R, on
A is a collection of k-ary tuples over A or, alternatively, a
subset of Ak. For every i1, . . . , in ∈ {1, . . . , k}, we denote by
pri1,...,in R the relation

{(ai1 , . . . , ain) | (a1, . . . , ak) ∈ R}

If R is a collection of tuples of not necessarily the same size,
we shall write extremes(R) to denote the relation

{(a1, ak) | (a1, . . . , ak) ∈ R}

A (relational) signature τ is a collection of relational
symbols (also called predicates), in which every symbol has
an associated arity. A structure A with signature τ (also called
τ -structure) consists of a set A called the universe of A, and
for each symbol R ∈ τ , of arity, say, k, a k-ary relation RA

on A, called the interpretation of R in A. We shall use the
same boldfaced and slanted capital letters to denote a structure
and its universe, respectively.

If B is a subset of A, then the substructure of A induced
by B, denoted A|B , is the structure over signature τ with
universe B such that for every predicate R in τ with arity,
say, k, RB = RA ∩Bk.

Let A,B be relational structures of the same signature with
universes A and B, respectively. A mapping f : A → B is
said to be a homomorphism from A to B if for any symbol R
from τ , and every a ∈ RA, f(a) ∈ RB. If, furthermore, f is
bijective and f−1 is a homomorphism from B to A, then we
say that f is an isomorphism. A partial homomorphism from
A to B is any homomorphism from an induced substructure
of A to B.

We say that a relation R ⊆ Ak is pp-definable from A if
there exists a (primitive positive) formula

ψ(x1, . . . , xk) ≡ ∃y1, . . . , y` ϕ(x1, . . . , xk, y1, . . . , y`)

where ϕ is a conjunction of formulas with relations in the
signature of A, such that for every (a1, . . . , ak) ∈ Ak

(a1, . . . , ak) ∈ R if and only if ψ(a1, . . . , ak) holds in A

Let H be a structure. The constraint satisfaction problem
with template H, denoted CSP(H), is the problem of decid-
ing, given a structure A of the same signature than H, whether
there exists a homomorphism from A to H. We will also call
a homomorphism from A to H a satisfying assignment or a
solution. In what follows H will always denote the template
of a constraint satisfaction problem.

III. WALKS

Let H be a structure and let A be an instance of CSP(H).
A walk ω on A is a sequence b1,a1, . . . ,bn,an of tuples on
A satisfying the following condition: for every 1 ≤ i ≤ n,
bi contains all the elements in ai−1 and ai (assume that a0
is the tuple of length 0). A subwalk of ω is any walk of the
form b1,a1, . . . ,bi,ai with i ≤ n. The length of a walk is the
number of its tuples divided by 2 and its width is the maximum
arity of its tuples. Note that we allow tuples of length 0.

A realization (in H) of a walk b1,a1, . . . ,bn,an is a walk
b′1,a

′
1, . . . ,b

′
n,a
′
n on H such that for every 1 ≤ i ≤ n there

exists a partial homomorphism hi from A to H whose domain
contains all elements in bi such that b′i = hi(bi), a′i = hi(ai),
and a′i−1 = hi(ai−1).

A zigzag-expansion of a walk b1,a1, . . . ,bn,an is any
walk of the form

bi1 ,ai1 , . . . ,bim ,aim

where:
1) i1, . . . , im ∈ {1, . . . , n},
2) i1 = 1,
3) im = n, and
4) ij+1 ∈ {ij + 1, ij − 1} for every j = 1, . . . ,m− 1.
A zigzag-realization of a walk ω is any realization of any

zigzag-expansion of ω.
We shall denote by realAω (resp. zz-realAω) the set of all

realizations (resp. zigzag-realizations) of ω. We might drop
the superscript A if it is clear from the context.

If R is a collection of realizations (for example realAω
or zz-realAω) then we shall use last(R) to the denote the
collection of all tuples that appear at the end of a realization
in R.

A walk ω = b1,a1, . . . ,bn,an is simple if there exists
a1, . . . , an such that for every 1 ≤ i ≤ n, ai = (ai) and
bi = (ai−1, ai) (with the exception of b1 which is set to (a1)).
In this case we shall use a1, . . . , an to denote the walk ω.
Similarly, we shall denote any realization of ω by a sequence
of n elements of H . Note that in this way, a simple walk
a1, . . . , an can be regarded as a n-ary tuple on A and realω
can be regarded as a subset of Hn.

Let ω = a1, . . . , an and ω′ = b1, . . . , bm be simple walks.
We shall use ω−1 to express the walk an, . . . , a1 obtained by
reversing the direction of ω. Furthemore, if an = b1 then we
shall use ω · ω′ to express the walk a1, . . . , an, b2, . . . , bm.

IV. DATALOG PROGRAMS

A Datalog Program (for template H) is a finite set of rules
of the form:

T0 ← T1, T2, . . . , Tn

where each Ti is an atomic formula. Then, T0 is called the
head of the rule and T1, T2, · · · , Tn is called the body of the
rule. There are two kinds of relational predicates occurring in
a program: predicates that occur at least once in the head of a
rule are called intensional database predicates (IDBs) and are
not part of the signature of H. The other predicates are called
extensional predicates (EDBs) and are part of the signature of
H. One special IDB, which is 0-ary, is the goal predicate of
the program.

Let r be the rule T0 ← T1, T2, . . . , Tn. Rule r is linear
if at most one atomic formula in its body has and IDB.
Furthermore, if r has no IDB in its body we say that is r
is non-recursive. The symmetric complement of a linear rule
r is the rule defined in the following way:

1) If r has an IDB in the body, say in T1, then the
symmetric complement is T1 ← T0, T2 . . . , Tn.

2) If r has no IDB in the body, then the symmetric
complement is again r.

A Datalog program is linear if so are all its rules. Further-
more, it is symmetric if the symmetric complement of any of
its rules also belongs to the program.

The semantics of Datalog programs are usually defined
in terms of fix-point operators. For convenience we shall
use an equivalent definition based on the inductive notion of
derivation.

Let P be a Datalog program for H and let A be a structure
with the same signature as H. A fact (for A and P) is any
atomic formula of the form R(b) where R is an IDB and b
is a tuple of variables in A with the same arity as R. We say
that Datalog program P derives a fact, R(b), (on A) if there
exists a rule R(x) ← R1(x1), . . . , Rn(xn) whose head has
predicate R and a mapping s of its variables to the universe
of A such that s(x) = b and, for every 1 ≤ i ≤ n, Ri(s(xi))
holds in A or is derived by P .

Lemma 1: Let k ≥ 1, let A and B be instances of CSP(H)
and let f be any homomorphism from A to B. Then P derives
R(f(a1), . . . , f(ar)) on input B for every fact R(a1, . . . , ar)
derived on input A.
Proof. Follows directly from the definitions.

Note that if P is linear, then we can associate to every fact
R(b) derived by P a finite sequence r1, . . . , rm of (possibly
repeated) rules, along with, for every rule ri a mapping si of
its variables to elements in A in the following way: rm and sm
are, respectively, the rule and mapping used in the derivation
of R(b). If rule rm is non-recursive then m = 1 and we are
done. Otherwise, the derivation of R(b) uses a fact, that must
have been derived previously. Then, set rm−1 and sm−1 to
be the rule and mapping used to derive it and iterate in the
natural way.

We associate to every Datalog rule T0 ← T1, . . . , Tn the
first order formula ∀y (T0 ← T1 ∧ · · · ∧ Tn) where y is a

tuple with the variables occurring in the rule. Indeed, we might
sometimes slightly abuse notation and move freely between a
rule and its associated formula.

We shall denote by H∗ the result of expanding H with all
relations on H . Formally, if τ is the signature of H, then the
signature, τ∗ of τ contains in addition to all predicates in τ a
predicate PR for each relation R on H . Then H∗ is defined to
be the structure with the same universe as H such that every
predicate in τ is interpreted as in H and every predicate PR

in τ∗ \ τ is intepreted as R.
For every k ≥ 1, the canonical linear symmetric k-ary

program (for H) is the program P defined as follows:
Program P contains an EDB for every predicate in τ and

an IDB for every predicate of arity at most k in τ∗ \ τ .
We shall abuse notation and, when no confusion is possible,
use the same symbol R to denote both the predicate and its
interpretation in H∗. Note that there are two 0-ary relations
on H: the empty set, denoted as false (which will be the
goal predicate) and the relation containing a tuple of length 0,
which we will denote as true.

Program P contains all linear rules r with at most k
variables such that both r and its symmetric complement (or
rather, such that both the formula associated to r and to its
symmetric complement) are logically valid in H∗. Note that
there are finitely many different rules with at most k variables
modulo renaming of variables and removing repeated atomic
formulas in the body.

We shall use ’k-program’ as a shortand for ’canonical
symmetric Datalog k-ary program for H’. We say that an
instance A passes the k-test if the k-program does not derive
false on input A.

Note that it follows from the definition that for every k ≥ 0,
the k-program always contains the rule

true←

whose head is true and body is empty. Furthermore, it will
be convenient several times to assume that every derivation
starts with this rule. We can assume this WLOG because every
application of a non-recursive rule T0 ← T1, T2, . . . , Tn can
be simulated by applying first the rule ’true←’, followed by
rule T0 ← true, T1, T2, . . . , Tn (which must be also present
in the k-program).

Also, note that it follows directly from the definitions and
Lemma 1 that if the k-program derives the goal predicate on
some instance A, then A must be unsatisfiable.

We say that ¬CSP(H) is definable in symmetric Datalog
if there is a symmetric Datalog program P such that for every
instance A, of CSP(H), A is unsatisfiable if and only if P
derives the goal predicate on input A. It is easy to see (see
[19]) that if ¬CSP(H) is definable by a symmetric Datalog
program with at most k variables per rule then it is definable
by the k-program.

V. A COMBINATORIAL CHARACTERIZATION OF
SYMMETRIC DATALOG

The following lemma gives a combinatorial perspective on
the canonical symmetric Datalog program. It is similar in spirit
to the characterization in terms of obstructions given in [33]
although the formalization given here, in terms of realizations,
is more suitable for our proofs.

Lemma 2: Let H be a structure and let k ≥ 1. Then, for
every instance A of CSP(H) the following two sentences are
equivalent:

1) A fails the k-test.
2) there exists some walk ω on A of width k such that

zz-realAω = ∅.
Although Lemma 2 could easily be obtained from [33] we

include a complete proof for the sake of completeness and,
more importantly, because an auxiliary lemma used in its proof
(mainly Lemma 3) will be used intensively later.

Lemma 2 follows by combining the following two lemmas.
Lemma 3: Let A be an instance of CSP(H) and let

ω = b1,a1, . . . ,bn,an be a walk of width at most k on
A. Then, on instance A, the k-program derives R(an) where
R = last(zz-realω).
Proof. For every 1 ≤ i ≤ n consider the relation Ri on H
defined as

Ri =
⋃
ω′

last(realω′)

where the union ranges over all subwalks ω′ =
bj1 ,aj1 , . . . ,bjm ,ajm with jm = i of any zigzag-expansion
of ω.

We shall show that, for every 1 ≤ i ≤ n, Ri(ai) is derived
by the k-program. Then, the lemma follows from the fact that
Rn = last(zz-realω). We prove the claim by induction on i:

(Case i = 1) We can assume WLOG that both b1 and a1
are a 0-ary tuple. It follows that R1 = true and the claim
follows since the rule ’true←’ belongs to the k-program.

(Case i > 1) We can assume WLOG that bi does not
contain repeated elements. Let bi = (b1, b2, . . . , bu), let
ai = (bk1 , bk2 , . . . , bkv), and let ai−1 = (bl1 , bl2 , . . . , blw).
Consider rule r with variables y1, y2, . . . , yu given by

∀y1, . . . , yu Ri(yk1 , yk2 , . . . , ykv)← F (y1, y2, . . . , yu)∧
Ri−1(yl1 , yl2 , . . . , ylw)

where F (y1, y2, . . . , yu) is a conjunction that contains,
for every predicate R and every t1, . . . , ts ∈ {1, . . . , u}
such that (bt1 , bt2 , . . . , bts) ∈ RA, the atomic formula
R(yt1 , yt2 , . . . , yts).

Rule r has at most k variables. We shall prove that r is
logically valid on H∗. Let s be any assignment of its variables
to H satisfying the body of r, that is, such that

H∗ |= F (s(y1), s(y2), . . . , s(yu))∧
Ri−1(s(yl1), s(yl2), . . . , s(ylw))

It follows from the definition of F (y1, y2, . . . , yu) that bp 7→
s(yp), 1 ≤ p ≤ u is a partial homomorphism from A to H.
Furthermore, since (s(yl1), s(yl2), . . . , s(ylw)) ∈ Ri−1, there
is a subwalk ω′ of a zigzag expansion of ω ending at ai−1
such that (s(yl1), s(yl2), . . . , s(ylw)) ∈ last(realω′). It follows
that (s(yk1

), s(yk2
), . . . , s(ykv

)) belongs to last(real(ω′,bi,ai))
where (ω′,bi,ai) denotes the new walk obtained by adding
bi,ai at the end of ω′. It follows from the definition of Ri

that Ri(s(yk1), s(yk2), . . . , s(ykv)) holds in H∗.
One can prove analogously that the symmetric complement

of r is also logically valid on H∗. Thus, rule r belongs to the k-
program. Now, observe that it follows from the definition of F
that F (bi) holds in A. Furthermore, by induction, Ri−1(ai−1)
is derived by the k-program. It follows that, using rule r, the
k-program can derive Ri(ai).

Lemma 4: Let k ≥ 1 and let A be an instance of CSP(H)
that fails the k-test. Then there exists some walk ω of width
k such that zz-realAω = ∅.
Proof. By definition, since A fails the k-test, the k-program
derives false on instance A. The sequence of derivations that
yields to false is given by a sequence of (possibly repeated)
rules r1, . . . , rn along with, for every rule ri, 1 ≤ i ≤ n, a
mapping si of its variables to elements in A. For every rule
ri, let yi be a tuple with its variables, let Ri(xi) be its head,
and define bi = si(yi) and ai = si(xi).

Let ω = b1,a1,b2,a2, . . . ,bn,an. We shall prove that
zz-realAω = ∅.

Let ω′ be a zigzag-expansion of ω, let ω′′ be any subwalk
of ω′ and let ai be the last element in ω′′. We shall show
by induction on the length, j, of ω′′ that last(realω′′) ⊆ Ri.
Since Rn = false, it follows that realω′ = ∅.

(Case j = 1) This follows directly by assuming WLOG that
r1 is the rule ’true←’.

(Case j > 1) We know that the last three tuples of
ω′′ are (in order) ai−1,bi,ai or ai+1,bi+1,ai for some
i ∈ {1, . . . , n}. Consider the first case and let ω′′′ be the
subwalk of ω′′ obtained removing bi,ai at the end of ω′′.
Let bi = (b1, b2, . . . , bu), let ai = (bk1 , bk2 , . . . , bkv) and
let ai−1 = (bl1 , bl2 , . . . , blw). It follows directly from the
definition that last(realω′′) is the relation:

{h(ai) | h is an homomorphism from A|{b1,...,bu} to H

such that h(ai−1) ∈ realω′′′}

Let yi = (y1, . . . , yu) and write rule ri (or rather its
associated first-order formula) as

∀y1, . . . , yu Ri(yk1
, . . . , ykv

)← Ri−1(yl1 , . . . , ylw)∧
S(y1, . . . , yu)

where Ri−1 is the IDB occurring in the body and
S(y1, . . . , yu) is the conjunction of all other atomic predicates
occurring in the body.

Let h be any homomorphism from A|{b1,...,bu} to H
such that h(ai−1) ∈ realω′′′ . Since the atomic formulas in
S(y1, . . . , yu) only contain EDBs it follows that S(h(bi))

holds in H (and hence in H∗). Furthermore, since h(ai−1) ∈
realω′′′ it follows from induction that h(ai−1) ∈ Ri−1. Then,

H∗ |= Ri−1(h(ai−1)) ∧ S(h(bi))

Since ri is logically valid on H∗ it follows that

H∗ |= Ri(h(ai))

or, equivalently, that h(ai) ∈ Ri and we are done.
Assume now that the last three tuples of ω′′ are

ai+1,bi+1,ai. As before, let ω′′′ be the subwalk of ω′′

obtained removing bi+1,ai at the end of ω′. Let bi+1 =
(b1, . . . , bu), let ai+1 = (bk1

, . . . , bkv
), and let ai =

(bl1 , . . . , blw). Let yi+1 = (y1, . . . , yu) and write rule ri+1

as

∀y1, . . . , yu Ri+1(yk1
, . . . , ykv

)← Ri(yl1 , . . . , ylw)∧
S(y1, . . . , yu)

where Ri is the IDB occurring in the body and S(y1, . . . , yu)
is the conjunction of all other atomic predicates occurring in
the body. The proof goes as in the previous case. We only need
to use the fact that the k-program also contains the symmetric
complement of ri+1, i.e., the rule

∀y1, . . . , yu Ri(yl1 , . . . , ylw)← Ri+1(yk1
, . . . , ykv

)∧
S(y1, . . . , yu)

VI. APPLICATION: CONSERVATIVE CSPS WITH BINARY
RELATIONS

Let H be a structure and let τ be its signature. Structure H
is said to be conservative if it contains, among its relations,
all subsets of its universe, that is, if H is of the form
(H,RH

1 , . . . , R
H
m, U

H
1 , . . . , U

H
n) where {UH

1 , . . . , U
H
n } = 2H .

An order is any binary relation of the form
{(a, a), (a, b), (b, b)} where a and b are different elements.

A sequence f1, . . . , fr of ternary operations is called a
Hagemann-Mitschke chain (HM chain) of lenght r if it satisfies
the identifies:
• x = f1(x, y, y)
• fi(x, x, y) = fi+1(x, y, y) for all i = 1, . . . , r − 1
• fr(x, x, y) = y

An operation f : Hj → H is a polymorphism of a relation
R ⊆ Hk if for every a1, . . . ,aj ∈ R, the tuple f(a1, . . . ,aj)
obtained by applying f component-wise to a1, . . . ,aj belongs
to R. Then, f is said to be a polymorphism of H if it is a
polymorphism of each one of its relations. We say that H
admits an HM-chain f1, . . . , fr if each fi is a polymorphism
of H. Larose and Tesson [6] proved that if ¬CSP(H) is
definable by symmetric Datalog then H admits a HM chain of
polymorphisms and conjectured that the converse also holds.
In this section we verify this conjecture for conservative
structures with relations of arity at most 2.

Theorem 1: Let H be a conservative structure with relations
of arity at most 2. Then, the following are equivalent:

1) It is not possible to pp-define an order from H.
2) H admits an HM-chain.
3) ¬CSP(H) is definable in symmetric Datalog.

If one of these conditions holds then CSP(H) is solvable in
logspace, otherwise it is hard for nondeterministic logspace.

Thorought the section H is a conservative structure. Before
embarking on the proof Theorem 1 we need first to introduce
a number of concepts and technical lemmas. This is done in
the next section.

A. Some technical preliminaires

A list L (for conservative template H) is any mapping with
range 2H . We say that L is the list of an instance A of
CSP(H) if A = dom(L) and, for every a ∈ A, L(a) is
precisely

⋂
i∈I U

H
i where I = {i | 1 ≤ i ≤ n and a ∈ UA

i }.
It follows directly from the definition of homomorphism that
if A and A′ are instances of CSP(H) with the same universe,
binary relations, and associated list, then both are satisfiable or
none. Similarly, it follows from the definition of the canonical
program that if the k-program derives some fact in one of the
instances then also derives it in the other. In consequence, in
order to prove Theorem 1 we can assume, if necessary, that
in an instance A of CSP(H), every a ∈ A participates in
exactly one of the relations UA

1 , . . . , U
A
n . In this case, one

can unambigously express instance A as a pair (G, L) where
G = (A,RA

1 , . . . , R
A
m) is a structure that contains the binary

relations of A and L is the list of A.
For every k ≥ 1 we shall denote by list

(G,L)
k the list that

maps every element a of G to the set X1 ∩ · · · ∩ Xr where
X1(a), . . . , Xr(a) are all unary facts derived by the k-program
on input (G, L) in which a occurs. To simplify notation we
shall write Lk instead of listG,L

k whenever G is clear from
the context.

Let L be a list (for H) and let (a, b) be an ordered pair of
different elements from H . We say that (a, b) is a good pair
of L (for H) if the following two conditions are satisfied:

1) {a, b} ∈ L(x) for some element x ∈ dom(L)
2) For every element y ∈ dom(L), every a′, b′ ∈ L(y),

and every binary relation R pp-definable from H: if
(a, a′), (b, b′), (b, a′) ∈ R then (a, b′) ∈ R.

Lemma 5: Assume that no order can be pp-defined from
H and let L be a list for H such that |L(x)| > 1 for some
x ∈ dom(L). Then L has a good pair.
Proof. Construct a sequence (a1, b1), R1, (a2, b2), R2, . . . in
the following way. Let a1, b1 be any two different elements
appearing in L(y1) for some y1 ∈ dom(L). If (a1, b1)
satisfy condition (2) of the definition of good pair then stop.
Otherwise, we set a2, b2 ∈ H and R1 ⊆ H2 in such a way
that a2, b2 ∈ L(y2) for some y2 ∈ dom(L) and R1 is a binary
relation pp-definable from H that contains (a1, a2), (b1, b2),
and (b1, a2) but not (a1, b2). We can assume, intersecting
R1 with {a1, b1} × {a2, b2} if necessary, that R1 is exactly
{(a1, a2), (b1, b2), (b1, a2)}. We claim that the iteration of this
procedure must eventually come to a halt. It then follows that
the last pair (an, bn) in the sequence is a good pair for L.

Let us proof our claim by contradiction. Indeed, if the se-
quence (a1, b1), R1, (a2, b2), R2, . . . is infinite then we could
find i 6= j with (ai, bi) = (aj , bj). Then, the relation pp-
defined with the formula ∃xi+1, . . . , xj−1Ri(y, xi+1) ∧ · · · ∧
Rj(xj−1, z) is an order, a contradiction.

Let A be an instance of CSP(H), let ω = (v1, . . . , vn)
be a simple walk on A and let a = (a1, . . . , an) and b =
(b1, . . . , bn) be realizations of ω. We say that a and b avoid
each other if {(ai, bi+1), (bi, ai+1)} ∩ pri,i+1 realω = ∅ for
every 1 ≤ i < n.

Lemma 6: Assume that no order can be pp-defined from H.
Let (G, L) be an instance of CSP(H), let (a, b) be a good pair
of L, let ω be a simple walk in (G, L) , and let a,b ∈ realω
be realizations of ω that avoid each other such that a starts
and ends at a and b starts and ends at b. Then there is no
realization c ∈ realω that starts at a and ends at b.
Proof. Let ω = (v1, . . . , vn), a = (a1, . . . , an), and b =
(b1, . . . , bn). Assume, towards a contradiction that there exists
some c = (c1, . . . , cn) falsifying the lemma.

Let i be smallest such that {(bi, ci+1), (ci, bi+1)} ∩
pri,i+1 realω 6= ∅ (such i always exists because cn = bn = b).

Assume first that (ci, bi+1) ∈ pri,i+1 realω . Consider the
simple walk ω′ = (v1, . . . , vi, vi+1, vi, . . . , v1) and let R be
the relation

realω′ ∩{a1, b1, c1} × · · · × {ai, bi, ci} × {ai+1, bi+1}×
{ai, bi} × · · · × {a1, b1}

It follows that R contains (a1, . . . , ai, ai+1, ai, . . . , a1),
(b1, . . . , bi, bi+1, bi, . . . , b1) and (c1, . . . , ci, bi+1, bi, . . . , b1),
and hence {(a, a), (a, b), (b, b)} ⊆ extremes(R). It follows
from the fact that a and b avoid each other and the minimality
of i that (b, a) 6∈ extremes(R). Since extremes(R) is pp-
definable from H, we obtain a contradiction.

Otherwise, (bi, ci+1) ∈ pri,i+1 realω and (ci, bi+1) 6∈
pri,i+1 realω . Now, let ω′ be (v1, . . . , vi, vi+1) and let R be
the relation

realω′ ∩{b1, c1} × · · · × {bi, ci} × {bi+1, ci+1}

We obtain that extremes(R) = {(a, ci+1), (b, ci+1), (b, bi+1)}
contradicting that (a, b) is a good pair.

The following two lemmas follow from Lemma 3.
Lemma 7: Let A be an instance of CSP(H) that passes

the 2-test, and let L be its list. If |L(x)| = 1 for every element
x ∈ G then A has a solution.
Proof. We show that the mapping h sending every element
a ∈ A to the only element in L(a) is a solution. Indeed,
let R be any predicate, let a ∈ RA, and let ω = b1,a1 be
the walk with a1 = b1 = a. We know from Lemma 3 that
last(zz-realω) 6= ∅ (Note that we are using the fact that all
relations in H have arity at most 2). Since |L(a)| = 1 for
every a ∈ A, it follows that h(a) is the only possible tuple in
last(zz-realω). Consequently, h(a) ∈ RH.

Lemma 8: Let A be an instance of CSP(H), let ω =
(x, . . . , y) be a simple walk. Then, the 3-program can derive
a fact R(x, y) where R ⊆ extremes(zz-realω).

Proof. Consider the walk ω′ of width 3 obtained by adding
x to every tuple of ω. It follows from Lemma 3 that the 3-
program can derive R(x, y) where R = last(zz-realω′). It
follows easily from the definition of zigzag-realization and
the choice of ω′ that R ⊆ extremes(zz-realω).

Let S and R be relations on H of arity s and r respectively.
We denote by S×R the cartesian product of S and R. Also, we
define S → R to be the (s+r)-ary relation {(h1, . . . , hs+r) ∈
Hs+r | (h1, . . . , hs) 6∈ S ∨ (hs+1, . . . , hs+r) ∈ R}.

Lemma 9: Let r be a rule of the j-program with head
R0(x0) and body R1(x1) ∧ · · · ∧ Rn(xn) where R1 is an
IDB, and let S(z) be an atomic formula where S is an IDB
of arity k and z is a tuple of variables. Then the following
holds:

1) The rule obtained from r in the following way:
a) Replace the head by (S ×R0)(z,x0)
b) Replace R1(x1) by (S ×R1)(z,x1)
c) Remove S(z) from the body, if present

belongs to the (j + k)-program.
2) The rule obtained from r in the following way:

a) Replace the head by (S → R0)(z,x0)
b) Replace R1(x1) by (S → R1)(z,x1)
c) Remove S(z) from the body, if present

belongs to the (j + k)-program.
Proof. Let r′ be the rule generated in (1) or (2). It is only
necessary to show that both r′ and its symmetric rule are
logically valid on H∗. This follows directly from the semantics
of first-order logic. For the sake of completeness we enclose
a proof in the appendix.

Lemma 10: Let j, k ≥ 0, let A be an instance of CSP(H),
and let R(a) be a fact derived by the j-program on A. Then,
for every IDB S of arity k, every b ∈ Ak, and every ` ≥ j+k,
the `-program derives (S ×R)(b,a) iff it derives S(b).
Proof. Consider the sequence r1, . . . , rn of (possibly re-
peated) rules that are used in the derivation of R(a) by the j-
program. We can assume WLOG that r1 is the rule ’true←’.
Let x be a tuple of k different fresh variables and consider the
new sequence r′2, . . . , r

′
n of rules where r′i is obtained from

ri and S(x) as in Lemma 9(1). Observe that every rule from
r′2, . . . , r

′
n has at most j + k variables.

Assume that S(b) is derived by the `-program. Then we
can apply rules r′2, . . . , r

′
n (mimicking the derivation of R(a))

to derive (S ×R)(b,a) (here and in the rest of the proof we
are using that (S × true) is equivalent to S). Conversely, if
the `-program derives (S ×R)(b,a) then we can apply rules
r′n, . . . , r

′
2 (mimicking again the derivation of R(a) but this

time in reverse order) to obtain a derivation of S(b).
Lemma 11: Let j ≥ 1, let (G, L) be any instance of

CSP(H), let a ∈ G be any of its elements and let R be
Lj(a). Then the (j + 1)-program on instance (G, L) derives
R(a).
Proof. Let X1(a), . . . , Xm(a) be the set of all unary facts
derived by the j-program for element a. It follows from
Lemma 10, that the (j+1)-program can derive (X1×X2)(a, a)
and hence (X1 ∩X2)(a) since, as it is readily seen, the rule

(X1 ∩ X2)(x) ← (X1 × X2)(x, x) belongs to the (j + 1)-
program. Iterative application of this argument shows that the
(j + 1)-program can derive (X1 ∩ · · · ∩ Xm)(a). Since, by
definition, R = X1 ∩ · · · ∩Xm, we are done.

Lemma 12: For every j, k ≥ 0 and every instance (G, L)
of CSP(H) the following holds: every fact R(b) derived by
the k-program on (G, Lj) is also derived by the (1+ j+2k)-
program on (G, L).
Proof. Let ` = 1 + j + 2k. We shall prove the lemma
by induction on the number of rule applications that the k-
program needs to derive R(b) on (G, Lj).

(Base case) R(b) is derived by a non-recursive rule. We
can assume WLOG that the rule is ’true ←’ and the claim
follows.

(Inductive case) R(b) is derived by a recursive rule r with
head R(x0) and body R1(x1)∧· · ·∧Rn(xn) where R1 is the
IDB occurring in the body.

Let s be the instantiation used in the derivation of R(b)
and, for every 1 ≤ i ≤ n, let ai = s(xi). We can
assume, reordering terms if necessary, that there exists some
m ∈ {1, . . . , n} such that for every i ∈ {2, . . . , n}, Ri(ai)
holds in (G, L) if and only if i > m. We can also assume
that m − 1 ≤ k. Indeed, for every i ∈ {2, . . . ,m}, since
(G, Lj) and (G, L) only differ on their list it follows that Ri

is unary and that Ri is precisely the list of the only element
in ai. Hence, if the body of r does not contain repeated
atomic predicates then we might have at most one such atomic
predicate per variable in r.

By iterative application of Lemma 9(1) the rule r′ with head
(R×R2× · · ·×Rm)(x0,x2, · · · ,xm) and body (R1×R2×
· · ·×Rm)(x1, . . . ,xm)∧Rm+1(xm+1)∧· · ·∧Rn(xn) belongs
to the 2k-program (and hence to the `-program).

In what follows all the derivations are on instance (G, L).
By inductive hypothesis, R1(a1) is derived by the `-program.
Furthermore, by Lemma 11, R2(a2) is derived by the (j+1)-
program. It follows from Lemma 10 that the `-program derives
(R1×R2)(a1,a2). Then, by iterative application of the same
argument it follows that the `-program derives (R1 × R2 ×
· · ·×Rm)(a1,a2, . . . ,am). Since, Rm+1(am+1), . . . , Rn(an)
hold in (G, L) it follows that, using rule r′, the `-program can
derive (R×R2 × · · · ×Rm)(b,a2, . . . ,am).

Now, since the (j+1)-program derives Rm(am) it follows
from Lemma 10 that the `-program derives (R ×R2 × · · · ×
Rm−1)(b,a2, . . . ,am−1). Iterative application of the same
argument yields that the `-program derives R(b).

Corollary 1: For every j, k ≥ 0 and for every instance
(G, L) of CSP(H) the following holds: If (G, L) passes the
(1 + j + 2k)-test then (G, Lj)-passes the k-test.

Lemma 13: Let A be an instance of CSP(H), let S be
some EDB, let a ∈ Aj where j is the arity of S, and let A′

be the instance obtained, from A by adding a to SA. Then,
the (j + k)-program on input A derives (S → R)(a,b) for
every fact R(b) derived by the k-program on A′.

Proof. We prove it by induction on the number of rule
applications that the k-program needs derive R(b) on A′.

(Base case) R(b) is derived by a non-recursive rule. We
can assume WLOG that the rule is ’true←’. Note that (S →
true) is precisely Hj and hence the rule ’(S → true)(x)←’
belongs to the j-program.

(Inductive case) R(b) is derived by a recursive rule r with
head R(y) and body R1(x1)∧ · · · ∧Rn(xn) where R1 is the
IDB occurring in the body. Let s be the instantiation used
in the derivation of R(b) and, for every 1 ≤ i ≤ n, let
ai = s(xi). We can assume that S(a) appears at most once
in R2(a2), . . . , Rn(an). Indeed, if Ri(ai) = Ri′(ai′) = S(a)
then replace r by the new rule obtained by identifying xi and
xi′ (meaning that we identify the first variable in xi with the
first variable in xi′ and so on) and removing repeated atomic
predicates. Clearly, this new rule still belongs to the k-program
(since it is logically valid in H∗) and can be used to derive
R(b).

Let x be a tuple of j variables defined in the following way:
If, S(a) = Ri(ai) for some 1 ≤ i ≤ n then set x to be xi.
Otherwise, set x to be a tuple of fresh variables.

Let r′ be the rule obtained from r and S(x) as in
Lemma 9(2). Note that r′ has at most j+k variables. It follows
from inductive hypothesis that (S → R)(a,a1) is derived by
the (j+ k)-program on A. It follows easily that, using r′, the
(j + k)-program can derive (S → R)(a,b) on input A.

Corollary 2: Let A be an instance of CSP(H), let S be
a unary relation on H , let S be its complement (that is S =
H \ S), let a ∈ A, and let A′ be the new instance obtained
from A by adding a to SA. If A′ does not pass the k-test
then the (k + 1)-program derives S(a) on A.
Proof. The result follows from Lemma 13 by noticing that if
R = false then S → R is precisely S.

B. Proof of Theorem 1

A CSP describable by a symmetric Datalog program is
solvable in logspace by results in [17]; the hardness result is
from [6]. The direction (3)⇒ (2) was shown in [6] whereas
the direction (2) ⇒ (1) is well-known and easy to show (we
include a proof in the appendix for the sake of completeness).
So it only remains to show (1)⇒ (3).

The weight of a list L is defined to be the cardinality of the
following set:

{X ⊆ H | X ⊆ L(x) for some x ∈ dom(L) and |X| ≥ 2}

Let k : N→ N be the solution of the recurrence:
1) k(0) = 2
2) k(n) = 12 + 6k(n− 1), n > 0

In order to prove (1) ⇒ (3) we shall show that for every
n ≥ 0, every instance whose list has weight at most n and
passes the k(n)-test is satisfiable. Since the weight of any list
for H is bounded above by 2|H| − |H| − 1 it follows that
the k(2|H| − |H| − 1)-program defines ¬CSP(H). We shall
prove the claim by contradiction. Let n be the smallest number
falsifying the claim.

Lemma 14: There exists some instance (G, L) of CSP(H)
where L has weight n, a good pair (a, b) of L, and an element
x of G such that:

1) (G, L) passes the k(n)-test,
2) {a, b} ⊆ L11+4k(n−1)(x), and
3) the new instance obtained removing b from L(x) does

not pass the k(n)-test.
Proof. Let (G, L) be any instance with weight(L) ≤ n that
passes the k(n)-test and does not have a solution. We can
assume WLOG that the list L is minimal in the sense that
if for any x ∈ G we remove any element from L(x), then
the resulting instance does not pass the k(n)-test. We have
n > 0 since otherwise it would follow from k(0) = 2 and
Lemma 7 that (G, L) has a solution. It follows from Lemma
5 that L has a good pair (a, b). It only remains to show that
condition (2) is satisfied. Assume, towards a contradiction that
{a, b} 6⊆ L11+4k(n−1)(x) for every element x. It follows that
the weight of L11+4k(n−1) is at most n − 1. It follows from
condition (2) of the definition of k(n) and Corollary 1 that
(G, L11+4k(n−1)) passes the k(n− 1)-test. By the minimality
of n, (G, L11+4k(n−1)) (and hence (G, L)) has a solution,
which contradicts our assumption.

The next lemma is where Lemma 2 is used.
Lemma 15: There exists some instance (G, L) of CSP(H)

where L has weight n, a good pair (a, b) of L, and a set
X ⊆ G such that:

1) (G, L) is satisfiable,
2) {a, b} ⊆ L11+4k(n−1)(x) for every x ∈ X ,
3) there is no solution g of (G, L) such that g(x) 6= b for

every x ∈ X , and
4) (b, b) ∈ extremes(zz-real(G,L2)

ω) for every simple walk
ω whose both extremes belong to X .

Proof. We shall need the following construction. Let A be any
instance of CSP(H) and let ω = b1,a1, . . . ,bm,am be any
walk on A. We shall define inductively a structure structAω
and a homomorphism f from the universe of structAω to A in
the following way:

For every i ∈ {1, . . . ,m}, let bi = (b1, . . . , bri), and let Bi

be any isomorphic copy of B|{b1,...,bri}. Consider the disjoint
union of Bi, 1 ≤ i ≤ m denoted

⊎
1≤i≤m Bi and the mapping

f that sends every element a′ in it to the element a in A of
which a′ is a copy. The structure structAω is the result of
applying to

⊎
1≤i≤m Bi the following ’gluing process’: for

every 1 ≤ i < m and every element a in ai glue a′ and a′′

where a′ is the only element in Bi with f(a′) = a and a′′ is
the only element in Bi+1 with f(a′′) = a.

It follows directly from the construction that f is a homo-
morphism from structAω to A and that structAω has a solution
if and only if realAω 6= ∅.

We are now ready to start the proof of the lemma. Let
(G, L), (a, b), and x satisfying the conditions of Lemma 14.
Then, instance (G, L′) fails the k(n)-test where L′ is the
list that sets L′(x) = L(x) \ {b} and is identical to L

for any variable different than x. It follows from Lemma 2
that there exists a walk ω of width k(n) on (G, L′) such
that zz-real(G,L′)

ω = ∅. Since (G, L) passes the k(n)-test,
it follows again from Lemma 2 that there exists a zigzag-
expansion ω′ of ω such that real(G,L)

ω′ 6= ∅. Furthermore, since
zz-real(G,L′)

ω = ∅ we have that real(G,L′)
ω′ = ∅.

Let (T, I) = struct
(G,L)
ω′ , let f be the homomorphism from

struct
(G,L)
ω′ to (G, L) as defined at the beginning of the proof,

and define X to be f−1(x). We claim that (T, I), (a, b) and
X satisfy the conditions of the lemma.

Condition (1) follows from the definition of (T, I) and the
fact that real

(G,L)
ω′ 6= ∅. Notice also that for every u ∈ T ,

I(u) = L(f(u)). This implies that weight(I) ≤ weight(L) ≤
n and that (a, b) is a good pair of I . Condition (2) follows from
the fact that f is an homomorphism from (T, I) to (G, L)
and Lemma 1. To show (3), observe that the solutions g of
(T, I) such that g(u) 6= b for every u ∈ X are precisely
the solutions of instance (T, I ′) where I ′ is the list that acts
as I in all elements outside X and is defined to be I ′(u) =
I(u)\{b} for all elements u ∈ X . Notice that (T, I ′) is (up to
isomorphism) precisely structG,L′

ω′ . Consequently, (3) follows
from real

(G,L′)
ω′ = ∅.

Let us show item (4). Let ω′′ be any simple walk in
(T, I2) whose extremes y and z belong to X and assume
towards a contradiction that (b, b) 6∈ extremes(zz-real

(T,I2)
ω′′).

It follows from Lemma 8 and Lemma 12 that the 9-
program derives on instance (T, I) some fact S(y, z) with
(b, b) 6∈ S. Consequently, by Lemma 13 the 9-program
derives S(x, x) on (G, L), in contradiction with the fact that
b ∈ L11+4k(n−1)(x) ⊆ L9(x).

Let (G, L), (a, b), and X satisfying the conditions of
Lemma 15. Let Y ⊆ X be maximal with the property that
there exists a solution, say f , of (G, L) satisfying f(y) 6= b
for every y ∈ Y . Let x be any element in X \ Y and define
Z to be the set containing every node y ∈ G satisfying the
following:

there exists a simple walk ω in (G, L2) from x to y such
that (a, b) 6∈ extremes(zz-real

(G,L2)
ω·ω−1).

Lemma 16: There is a solution g of (G, L2)|Z such that
g(x) = a.
Proof. We have {a, b} ⊆ L11+4k(n−1)(x) from the choice of
x and condition (2) of Lemma 15. It follows from Lemma 12
and a ∈ L11+4k(n−1)(x) that H \{a}(x) has not been derived
by the 4+2k(n−1)-program on input (G, L2). Consider now
the instance (G, J) where J is the list that acts as L2 with
the exception of J(x), which is set to {a}. It follows from
Corollary 2 that (G, J) passes the 3 + 2k(n− 1)-test.

We claim that J2(z) (L(z) for every z ∈ Z. Then, it
follows that the list of the instance (G, J2)|Z has weight at
most n − 1. Since, by Corollary 1 this instance passes the
k(n − 1)-test it follows by the minimality of n that it has a
solution g, which is also a solution of (G, L2)|Z . Furthermore,

this solution must necessarily satisfy g(x) = a (since J(x) =
{a}) and we are done.

We shall now prove the pending claim. Let z be any element
in Z and let ω be the walk that places z in Z. Then, there exists
some b′ ∈ L(z) such that (b, b′) ∈ extremes(zz-real(G,L2)

ω).
Otherwise, by Lemma 3, the 2-program on instance (G, L2)
would derive a fact B(x) with b 6∈ B. Then, it would follow
by Lemma 12 that b 6∈ L7(z), in contradiction with the fact
that b ∈ L11+4k(n−1)(z).

Let A = last(zz-real(G,J)
ω). We shall prove that b′ 6∈ A,

which completes the proof, since by Lemma 3, J2(z) ⊆ A.
We prove the claim by contradiction. Indeed, if b′ ∈ A,
then, by definition, (a, b′) ∈ extremes(zz-real(G,L2)

ω), which
joinly with (b, b′) ∈ extremes(zz-real(G,L2)

ω) would imply
that (a, b) ∈ extremes(zz-real

(G,L2)
ω·ω−1), contradicting the as-

sumption z ∈ Z.

Let h : G→ H be the mapping that acts as f for all vertices
outside Z and that acts as g inside Z.

Let R be a predicate and let (x, x′) be any tuple in R(G,L).
Lemma 17: (h(x′), h(x′′)) ∈ R

Proof. If both endpoints x′ and x′′ belong to Z or both do not
belong to Z then the claim follows directly from the definition
of h. Assume then that x′ ∈ Z and x′′ 6∈ Z (the case x′′ ∈ Z
and x′ 6∈ Z is analogous).

Let (b′, b′′) = (f(x′), f(x′′)). Since f is a solution of
(G, L) it follows that (b′, b′′) belongs to R. Let a′ = g(x′).
Since a′ ∈ L2(x

′) it follows from Lemma 3 that that
(a′, a′′) ∈ R for some a′′ ∈ L(x′′).

To complete the proof we assume, towards a contradiction,
that (a′, b′′) 6∈ R. In what follows all the realizations are for
instance (G, L) unless explicitely stated.

Let w = v1, . . . , vn be the walk that has placed x′ in Z and
let (ω, x′′) be the walk v1, . . . , vn, vn+1 with vn+1 = x′′. We
define two realizations a and b in real(ω,x′′).

Realization a is defined to be (a1, . . . , an+1) where ai =
g(vi) if i ≤ n and a′′ if i = n + 1 whereas realization b is
defined to be (b1, . . . , bn+1) where bi = f(vi). Since both f
and g are solutions of (G, L2) it follows that {ai, bi} ⊆ L2(vi)
for all i ∈ {1, . . . , n}.

We shall prove that a and b avoid each other by contra-
diction. Let i be minimum such that (ai, bi+1) or (bi, ai+1)
belong to pri,i+1 real(ω,x′′)

Consider two cases:
(case i < n) Then it would follow that (a, b) ∈
extremes(zz-real

(G,L2)
ω·ω−1), in contradiction with the fact that

x′ ∈ Z.
(case i = n) We have (an, an+1) = (a′, a′′) and (bn, bn+1) =
(b′, b′′). We need to show that

{(a′, b′′), (b′, a′′)} ∩ prn,n+1 real(ω,x′′) = ∅

We have by assumption that (a′, b′′) 6∈ prn,n+1 real(ω,z).
Regarding (b′, a′′), let R be the relation

real(ω,x′′) ∩{a1, b1} × · · · × {an+1, bn+1}

We have that extremes(R) contains (a, a′′) and (b, b′′) and
does not contain (a, b′′). By the condition (2) of good pair it
follows that it does not contain (b, a′′) either. This completes
the proof that a and b avoid each other.

Now, since x′′ 6∈ Z, it follows that there is a
zigzag-expansion ω′ of v1, . . . , vn, vn+1, vn, . . . , v1 such that
realG,L2

ω′ (and hence realG,L
ω′) contains a realization c′ =

(a, . . . , b) starting at a and ending at b. Also, we can de-
fine in the obvious way from a and b, two realizations
a′ = (a, . . . , a) and b′ = (b, . . . , b) in realω′ such that a′

and b′ avoid each other. It follows that realizations a′,b′, c′

contradict Lemma 6

It follows from the previous lemma that h is a solution
of (G, L). The next lemma shows that h(y) 6= b for every
y ∈ Y ∪ {x}, in contradiction with the maximality of Y .

Lemma 18: h(y) 6= b for every y ∈ Y ∪ {x}
Proof. We consider two cases:
(case y 6∈ Z) Then h(y) = f(y) 6= b.
(case y ∈ Z) Assume, towards a contradiction, that h(y) =
b. Let ω be the path from x to y that places y in Z. Then
(a, b) ∈ extremes(zz-real(G,L2)

ω). This is because the image
g(ω), according to g, of the vertices in ω gives a realization
that starts at a and ends with b. Also, from item (4) of Lemma
15 it follows that (b, b) ∈ extremes(zz-real(G,L2)

ω). It follows
that (a, b) ∈ extremes(zz-real

(G,L2)
ω·ω−1), contradicting that y ∈

Z.

This completes the proof of Theorem 1.

VII. APPENDIX

A. Proof of Lemma 9

Assume first that r is the rule generated in (1). It is only
necessary to show that both r′ and its symmetric complement
are logically valid on H∗. We enclose here only the proof for
r′ as the proof of its symmetric complement is analogous. We
can assume, reordering if necessary, that if S(z) appears in
the body at all then it is precisely Rn(xn). Hence, r′ is

(S×R)(z,x0)← (S×R1)(z,x1)∧R2(x2)∧ · · · ∧Rm(xm)

where m = n − 1 or m = n (depending on whether S(z)
appears or not in the body). Our goal is to show that

H∗ |= (S ×R0)(s(z), s(x0))← (S ×R1)(s(z), s(x1))∧
R2(s(x2)) ∧ · · · ∧Rm(s(xm))

where s is any mapping from the variables of rule r′ to H .
Assume then that (S×R1)(s(z), s(x1))∧R2(s(x2))∧· · ·∧

Rm(s(xm)) holds in H∗. Since (S ×R1)(s(z), s(x1)) holds
in H∗ it follows both S(s(z)) and R1(s(x1)) hold in H∗. The
latter implies that

H∗ |= R1(s(x1)) ∧ · · · ∧Rm(s(xm)).

It also follows that

H∗ |= R1(s(x1)) ∧ · · · ∧Rn(s(xn))

This is because either m = n (and there is nothing to prove)
or Rn(xn) = S(z). Since r is logically valid in H∗ it follows
that R0(s(x0)) holds in H∗. Since S(s(z)) also holds in H∗,
it follows that H∗ |= (S ×R0)(s(z), s(x0)).

Assume now that r′ is the rule generated by (2). Again we
shall show that r′ is logically valid on H∗ and ommit the
proof for its symmetric complement. We assume again that if
S(z) appears in the body at all, then it is precisely Rn(xn).
Hence, r′ is

(S → R0)(z,x0)← (S → R1)(z,x1)∧R2(x2)∧· · ·∧Rm(xm)

where m = n− 1 or m = n. Our goal is to show that

H∗ |= (S → R0)(s(z), s(x0))← (S → R1)(s(z), s(x1))∧
R2(s(x2)) ∧ · · · ∧Rm(s(xm))

where s is any mapping from the variables of rule r′ to H .
Assume then that (S → R1)(s(z), s(x1))∧R2(s(x2))∧ · · · ∧
Rm(s(xm)) holds in H∗. We can assume that H∗ |= S(s(z))
since otherwise H∗ |= (S → R0)(s(z), s(x0)) and we are
done. It follows that H∗ |= R1(s(x1)). Consequently,

H∗ |= R1(s(x1)) ∧ · · · ∧Rm(s(xm))

It also follows that

H∗ |= R1(s(x1)) ∧ · · · ∧Rn(s(xn))

This is becuase either m = n (and there is nothing to prove)
or Rn(xn) = S(z). Since r is logically valid in H∗ it follows
that R0(s(x0)) (and hence (S → R0)(s(z), s(x0))) also holds
in H∗.

B. Proof of (2)⇒ (1) in Theorem 1

Assume towards a contradiction that an order
{(a, a), (a, b), (b, b)} is pp-definable from H and that
H admits an HM chaim f1, . . . , fr. For every 1 ≤ i ≤ r, let
us denote by ai be the result of applying fi to (b, b), (a, b),
and (a, a) component-wise. We shall prove by induction that
ai = (b, b) for every 1 ≤ i ≤ r.

First, since {(a, a), (a, b), (b, b)} is pp-definable from H it
follows (see for instance [4]) that it also admits f1, . . . , fr as
polymorphisms. It follows that ai ∈ {(a, a), (a, b), (b, b)} for
every 1 ≤ i ≤ r. Consequently, to prove our claim it is only
necessary to show that the first coordinate of ai is b. If i = 1,
this is done by the first identify of HM whereas if i > 1 then
it follows from the inductive hypothesis and the second HM
identity. Finally, notice that ar = (b, b) contradicts the third
HM identity.

REFERENCES

[1] P. Jeavons, “On the algebraic structure of combinatorial problems,”
Theor. Comput. Sci., vol. 200, no. 1-2, pp. 185–204, 1998.

[2] T. Feder and M. Y. Vardi, “Monotone monadic SNP and constraint sat-
isfaction,” in Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, S. R.
Kosaraju, D. S. Johnson, and A. Aggarwal, Eds. ACM, 1993, pp.
612–622.

[3] ——, “The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory,”
SIAM J. Comput., vol. 28, no. 1, pp. 57–104, 1998. [Online]. Available:
http://dx.doi.org/10.1137/S0097539794266766

[4] A. A. Bulatov, P. Jeavons, and A. A. Krokhin, “Classifying the com-
plexity of constraints using finite algebras,” SIAM J. Comput., vol. 34,
no. 3, pp. 720–742, 2005.

[5] B. Larose and L. Zádori, “Bounded width problems and algebras,”
Algebra Universalis, vol. 56, no. 3-4, pp. 439–466, 2007.

[6] B. Larose and P. Tesson, “Universal algebra and hardness results for
constraint satisfaction problems,” Theor. Comput. Sci., vol. 410, no. 18,
pp. 1629–1647, 2009.

[7] T. J. Schaefer, “The complexity of satisfiability problems,” in Proceed-
ings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA, R. J. Lipton, W. A. Burkhard,
W. J. Savitch, E. P. Friedman, and A. V. Aho, Eds. ACM, 1978, pp.
216–226.

[8] L. Libkin, Elements of finite model theory, ser. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2004.

[9] A. Atserias, “On digraph coloring problems and treewidth duality,” Eur.
J. Comb., vol. 29, no. 4, pp. 796–820, 2008.

[10] J. Nešetřil and C. Tardif, “Duality theorems for finite structures (char-
acterising gaps and good characterisations),” J. Combin. Theory Ser. B,
vol. 80, no. 1, pp. 80–97, 2000.

[11] ——, “Short answers to exponentially long questions: extremal aspects
of homomorphism duality,” SIAM J. Discrete Math., vol. 19, no. 4, pp.
914–920 (electronic), 2005.

[12] B. Larose, C. Loten, and C. Tardif, “A characterisation of first-order
constraint satisfaction problems,” Logical Methods in Computer Science,
vol. 3, no. 4, 2007.

[13] B. Larose, M. Valeriote, and L. Zádori, “Omitting types, bounded width
and the ability to count,” IJAC, vol. 19, no. 5, pp. 647–668, 2009.
[Online]. Available: http://dx.doi.org/10.1142/S021819670900524X

[14] L. Barto and M. Kozik, “Constraint satisfaction problems solvable by
local consistency methods,” J. ACM, vol. 61, no. 1, p. 3, 2014.

[15] A. Atserias, A. A. Bulatov, and A. Dawar, “Affine systems of equations
and counting infinitary logic,” Theor. Comput. Sci., vol. 410, no. 18, pp.
1666–1683, 2009.

[16] L. Barto and M. Kozik, “Robust satisfiability of constraint satisfaction
problems,” in Proceedings of the 44th Symposium on Theory of Com-
puting Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
H. J. Karloff and T. Pitassi, Eds. ACM, 2012, pp. 931–940.

[17] L. Egri, B. Larose, and P. Tesson, “Symmetric datalog
and constraint satisfaction problems in logspace,” in 22nd
IEEE Symposium on Logic in Computer Science (LICS
2007), 10-12 July 2007, Wroclaw, Poland, Proceedings. IEEE
Computer Society, 2007, pp. 193–202. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538

[18] O. Reingold, “Undirected connectivity in log-space,” J. ACM, vol. 55,
no. 4, 2008.

[19] V. Dalmau and B. Larose, “Maltsev + datalog –> symmetric datalog,” in
Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA.
IEEE Computer Society, 2008, pp. 297–306.

[20] L. Egri, A. A. Krokhin, B. Larose, and P. Tesson, “The complexity of the
list homomorphism problem for graphs,” Theory Comput. Syst., vol. 51,
no. 2, pp. 143–178, 2012.

[21] J. Bulin, D. Delic, M. Jackson, and T. Niven, “On the reduction of
the CSP dichotomy conjecture to digraphs,” in Principles and Practice
of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings, ser. Lecture
Notes in Computer Science, C. Schulte, Ed., vol. 8124. Springer, 2013,
pp. 184–199.

[22] P. Erdős, A. L. Rubin, and H. Taylor, “Choosability in graphs,” in
Proceedings of the West Coast Conference on Combinatorics, Graph
Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979),
ser. Congress. Numer., XXVI. Utilitas Math., Winnipeg, Man., 1980,
pp. 125–157.

[23] T. Feder, P. Hell, and J. Huang, “Bi-arc graphs and the complexity of
list homomorphisms,” J. Graph Theory, vol. 42, no. 1, pp. 61–80, 2003.

[24] P. Hell and A. Rafiey, “The dichotomy of list homomorphisms for
digraphs,” in Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cali-
fornia, USA, January 23-25, 2011, D. Randall, Ed. SIAM, 2011, pp.
1703–1713.

[25] N. Alon and M. Tarsi, “Colorings and orientations of graphs,” Combi-
natorica, vol. 12, no. 2, pp. 125–134, 1992.

[26] C. Thomassen, “Every planar graph is 5-choosable,” J. Combin. Theory
Ser. B, vol. 62, no. 1, pp. 180–181, 1994.

[27] A. A. Bulatov, “Complexity of conservative constraint satisfaction
problems,” ACM Trans. Comput. Log., vol. 12, no. 4, p. 24, 2011.

[28] A. Kazda, “Constraint satisfaction problem and universal algebra,” Ph.D.
dissertation, Charles University, 2013.

[29] V. Dalmau, “Linear datalog and bounded path duality of relational
structures,” Logical Methods in Computer Science, vol. 1, no. 1, 2005.

[30] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi, “Constraint satisfaction,
bounded treewidth, and finite-variable logics,” in Principles and Practice
of Constraint Programming - CP 2002, 8th International Conference,
CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, ser.
Lecture Notes in Computer Science, P. V. Hentenryck, Ed., vol. 2470.
Springer, 2002, pp. 310–326.

[31] A. A. Bulatov, A. A. Krokhin, and B. Larose, “Dualities for constraint
satisfaction problems,” in Complexity of Constraints - An Overview of
Current Research Themes [Result of a Dagstuhl Seminar]., ser. Lecture
Notes in Computer Science, N. Creignou, P. G. Kolaitis, and H. Vollmer,
Eds., vol. 5250. Springer, 2008, pp. 93–124.

[32] L. Egri, P. Hell, B. Larose, and A. Rafiey, “Space complexity of list
H-colouring: a dichotomy,” in Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, C. Chekuri, Ed. SIAM, 2014, pp.
349–365.

[33] L. Egri, “On constraint satisfaction problems below p,” Journal of Logic
and Computation, 2014.

