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A B S T R A C T

The spatial mapping of localized events in brain activity critically depends on the correct identification of the
pattern signatures associated with those events. For instance, in the context of epilepsy research, a number of
different electrophysiological patterns have been associated with epileptogenic activity. Motivated by the need to
define automated seizure focus detectors, we propose a novel data-driven algorithm for the spatial identification
of localized events that is based on the following rationale: the distribution of emerging oscillations during
confined events across all recording sites is highly non-uniform and can be mapped using a spatial entropy
function. By applying this principle to EEG recording obtained from 67 distinct seizure epochs, our method
successfully identified the seizure focus on a group of ten drug-resistant temporal lobe epilepsy patients (average
sensitivity: 0.94, average specificity: 0.90) together with its characteristic electrophysiological pattern signature.
Cross-validation of the method outputs with postresective information revealed the consistency of our findings in
long follow-up seizure-free patients. Overall, our methodology provides a reliable computational procedure that
might be used as in both experimental and clinical domains to identify the neural populations undergoing an
emerging functional or pathological transition.
1. Introduction

The study of high cognitive functions or brain diseases with electro-
encephalography often involves the identification of changes in the
recorded potentials that are time-locked to an event (Luck et al., 2000;
Lauchaux et al., 2012; Kropotov, 2016). Depending on the nature of the
problem being addressed, this event can be the onset of an external
stimulus, a motor act, or a pathological symptomatology. In all cases, the
spatial localization of the changes elicited in brain activity depends on
the identification of the pattern signatures of those changes.

For instance, in the context of epilepsy research and monitoring with
intracranial EEG, clinicians target specific electrophysiological patterns
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that are known to be associated with epileptic activity. In particular, the
spatial mapping of pathological patterns of activity in drug-resistant
epilepsy patients undergoing pre-surgical stereo-electroencephalog-
raphy (SEEG) (Talairach et al., 1974; Munari and Bancaud, 1985; Guenot
et al., 2002; Engel et al., 2005) is a crucial step to delineate the seizure
onset zone (SOZ) and plan a successful surgery.

Over the last decades, the problem of seizure focus localization from
intracranial EEG recordings has fostered the development of quantitative
tools to better characterize and understand ictal genesis and propagation.
Several biomarkers characterize the epileptogenicity of the monitored
brain structures based on preselected spectral features of the signal
(Bartolomei et al., 2008; David et al., 2011; Gnatovsky et al., 2011, 2014;
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Andrzejak et al., 2015; Vila-Vidal et al., 2017). More recent studies have
proposed automatic methods based on high-frequency oscillations
(HFOs) or stochastic properties of the SEEG signals in predefined fre-
quency windows (Geertsema et al., 2015; Liu et al., 2016; Murphy et al.,
2017; Varatharajah et al., 2017).

Despite many efforts, the gold standard in clinical practice still re-
mains visual inspection of EEG recordings due a number of reasons. For
instance, the heterogeneity of electrophysiological patterns associated
with seizure onset (Perucca et al., 2014; Lagarde et al., 2016) represents a
major drawback to design SOZ detection algorithms that are universally
valid for all seizure typologies and patients. All cited works made a priori
assumptions on the spectral features of ictal-driven activity (e.g. using
HFOs or power in the broadband spectrum) andmight turn ineffective for
seizures that do not fulfil such frequency constraints. For example, SOZ
detectors based on HFOs (Geertsema et al., 2015; Liu et al., 2016; Mur-
phy et al., 2017) are very specific to fast discharges, but might overlook
pathological patterns of activity dominated by lower frequency oscilla-
tions and longer temporal scales.

In the present study, we propose a novel data-driven methodology for
the spatial localization of spatially confined events in brain activity from
intracranial EEG recordings that makes no assumptions on the spectral
properties of the pattern signatures of those events. Our method relies on
finding the temporal scale and frequency range of locally enhanced
neural oscillations associated with the event of interest. Central to our
method is the definition of two novel measures, the global activation
(GA) and the activation entropy (AE), that quantify the magnitude of
spectral changes with respect to a pre-defined baseline and the spread of
these activations across recording sites, respectively, at different fre-
quencies and as time progresses from the occurrence of the event. By
setting appropriate conditions on these measures, it is possible to find
time-frequency windows where the most relevant sites can be optimally
discriminated.

To validate our algorithm, we adjusted and applied it to peri-ictal
SEEG recordings from 10 epileptic patients to identify the seizure onset
patterns and localize the seizure onset zone (SOZ), achieving very high
accuracy values. In the hope that it will be useful to other researchers,
some of the processing tools used in this work have been publicly
released as an open-access Python package (Epylib v1.0: https://gith
ub.com/mvilavidal/Epylib).

The method that we propose could be used to identify the pattern
signatures and spatial localization of the brain response to events of
clinical or cognitive relevance. In particular, our framework is particu-
larly suitable to be used as a complementary tool during the pre-surgical
evaluation and planning to better identify and interpret the regions
involved in seizure generation and propagation.

2. Materials and methods

The method described here can be used to extract the pattern signa-
tures (temporal and spectral features) associated to localized events of
clinical or cognitive interest recorded with the use of electroencepha-
lography techniques. Without loss of generality, our methodwas tested in
the SOZ localization setting, where a clinically-validated benchmark is
available for comparison. For the sake of simplicity, the methods’
description will be referred to the case of seizure focus localization from
peri-ictal SEEG recordings (Fig. 1A and B).

2.1. Low entropy map of enhanced neural oscillations

2.1.1. Magnitude and spread of enhanced oscillations: Global activation
(GA) and activation entropy (AE)

The current approach builds upon the previously introduced mean
activation (MA) measure (Vila-Vidal et al., 2017), which quantifies the
average spectral activation of each targeted brain structure with respect
to a certain baseline period for pre-defined frequency and time windows
of interest (Fig. 1C). In our case, we use a pre-ictal baseline of activity
2

(from 60 to 20 s before ictal onset). A detailed description of the
computation of the MA can be found in the Supplementary Information.
We will denote the MA of a given region j in the frequency band f and
computed over a time window spanning from the seizure onset until time
t with the following notation: MAjðf ; tÞ.

For optimal focus detection we must ensure that there is a hierar-
chical and selective activation of SOZ contacts only. Central to our
approach is the definition of two novel measures, namely the global
activation (GA) and the activation entropy (AE), that are jointly opti-
mized to find time-frequency windows of interest where ictal activity is
maximal with respect to a baseline pre-ictal period and is spatially
confined to a few contacts. Fig. 2 illustrates how these measures are
computed and used to assess the amount of information carried in each
window of interest. On one hand, the global activation (GA) quantifies
the magnitude of the most relevant spectral activations with respect to
the pre-ictal baseline state for a given time-frequency window of interest.
It is defined as the weighted average MA over all contacts, where each
contact’s contribution is weighted by its own activation, thus ensuring
that most active regions have a higher impact on the final value (Fig. 2A):

GAðf ; tÞ ¼
PN

j¼1wj �MAjðf ; tÞPN
j¼1wj

; (1)

with wj ¼ MAjðf ; tÞ if MAjðf ; tÞ > 0, and wj ¼ 0, if MAjðf ; tÞ � 0. On the
other hand, the AE is defined as the entropy of the MA distribution and
characterizes the spatial spread of spectral activations for the given time-
frequency of interest. In order to compute the AE, the MA profile is first
discretized using h bins homogeneously spaced between the minimum
and maximum MA values, thus defining h discrete activation levels. To
capture the relevant seizure dynamics, the binning needs to be adjusted
to the characteristic scale of power activations associated with the ictal
event. While using a large h can result in inactive channels being clas-
sified in different activation levels, a small h might be inappropriate to
describe the richness of activations within a single MA profile. Based on
the observed variability of seizure activations above baseline pre-ictal
activity (Vila-Vidal et al., 2017), we set h ¼ 10. To further validate this
choice, we also ran a stability analysis varying the number of bins used to
compute the AE (see Fig. 5C for results).

Probability values for each activation level (pi for i ¼ 1;…; h) are
found as the fraction of contacts lying within the corresponding MA bin
(Fig. 2A). The Shannon’s entropy of this distribution is obtained using the
formula:

AEðf ; tÞ ¼ �
Xh
i¼1

pilog

 
pi

!
(2)

In order to systematically explore different windows for optimal SOZ
detection we defined a time-frequency grid where we computed the GA
and AE. To define the grid, we divided the frequency spectrum into a set
of non-overlapping bands and considered a set of nested time windows
obtained by fixing the left bound at seizure onset and varying the right
bound. The granularity of the exploration grid can be tuned depending
on the properties of the changes that need to be detected. We adjusted
our choice to appropriately capture the characteristic spectral properties
of seizure onset patterns that are typically found in clinical practice and
described in the literature (Perucca et al., 2014; Lagarde et al., 2016).
Specifically, we split the frequency spectrum into 10 bands defined by the
following cutting-points: 1, 4.2, 8, 12, 31, 50, 73, 88, 107, 130 and 150
Hz. In the time-domain, we considered windows with right bound from
100 ms to 30 s after seizure onset using a finer granularity in the vicinity
of seizure onset in order to account for fast short-lasting activity (steps of
100 ms from 100 ms to 5 s and steps of 1 s from 5 to 30 s). Additionally,
we also considered time windows spanning from seizure onset into the
pre-ictal period, i.e., with right bound at seizure onset and left bound
ranging from 30 s to 0.1 s before seizure onset, with the same spacing as
before.

https://github.com/mvilavidal/Epylib
https://github.com/mvilavidal/Epylib
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For each time-frequency window in the exploration grid, we
computed the MA profile and extracted its GA and AE. Fig. 2B and C
shows the GA and AE distributions for one exemplary seizure,
respectively.

2.1.2. Pattern signature and spatial map of localized emerging oscillations
Fig. 3 summarizes the processing steps to obtain the optimal time-

frequency windows for SOZ detection (referred to as seizure onset win-
dows, SOWs) and the SOZ. SEEG signals in the peri-ictal period were
band-pass filtered in pre-defined bands of interest spanning the whole
spectrum (Fig. 3A). For each band, MAs were obtained for all possible
Fig. 1. Example of SEEG signal analysis for a time window (0–20 s after seizure onse
view of the brain showing the trajectories of the five electrodes and their target reg
lateral parts of the orbitofrontal cortex (F), amygdala (A), anterior hippocampus (
electrode are numbered starting from inside. Contacts HA1, HA2, HA3, HP1 and H
evaluation. (B) SEEG recordings from a selection of contacts (two per electrode) a
shown). Clinically identified SOZ contacts are marked in red. (C) Signal analysis in a g
interest. Signals were first band-pass filtered at 12–31 Hz and the first 20 s of ictal acti
was obtained using the Hilbert transform method and z-scored with respect to a basel
the first 40 s of the pre-ictal period (middle). The mean activation (MA) was compu
period (right).

3

time windows of interest (Fig. 3B). For each time-frequency window in
the exploration grid, we extracted the GA and AE from the MA distri-
bution as described in the previous section (Fig. 3C).

Seizure onset window (SOW) detection was achieved by finding time-
frequency windows that maximized the GA under the constraint of low
AE to ensure that spectral activations were confined only to a few con-
tacts. We considered all pairs (f,t) with positive times (i.e., excluding
time windows in the pre-ictal state) and set two threshold conditions, one
per variable. Regarding the first variable, we restricted our analysis to the
right tail of the GA distribution, primarily selecting the 5% of the win-
dows with the highest GA values. We further required GA to be above 3 to
t) and frequency band of interest (12–31 Hz) in a seizure of patient 1. (A) Medial
ions. Electrode labels refer to the regions monitored by their internal contacts:
HA), posterior hippocampus (HP) and temporal pole (TB). Contacts within an
P2 were identified as being part of the seizure onset zone in the pre-surgical
round the seizure onset (20 s of pre-ictal and 40 s of the seizure period are
iven time window (0–20 s after seizure onset) and frequency band (12–31 Hz) of
vity were selected for analysis (left). Each contacts’ instantaneous spectral power
ine distribution defined by accumulating the power values of all contacts during
ted for each contact by averaging all power values in the first 20 s of the ictal
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ensure significant global activations with respect to the pre-ictal state.
Additionally, we set a threshold of 0.5 on the AE, selecting windows with
entropies smaller than this value. The decision to choose this value was
based on a theoretical property of the entropy function that we derived
(see Supplementary Information) to find lower bound estimates on the
fraction of inactive channels induced by the AE threshold. As an example,
if a time-frequency window has an AE smaller than 0.5, at least 80% of
the recording sites must be in the same activation level (i.e., they must lie
within the same MA bin). In addition to the primary threshold values
(GA>95th percentile, AE<0.5), we performed a stability analysis to show
the robustness of the methods’ output with respect to particular
threshold choices (see Fig. 5B for results).

All time-frequency windows satisfying both threshold conditions
Fig. 2. Two novel measures characterize the magnitude and spread of enhanced neur
windows of interest is done around seizure onset. (A) MA profiles (mean spectral a
windows of interest. Visually marked SOZ channels are shown in red. The first two tim
structured and selective activations of SOZ channels. The third example (107–130 H
frequency activity is present in all recording sites. Two measures characterize the su
vation (GA) quantifies the magnitude of the highest activations for a given frequency
each contact’s contribution is weighted by its MA value (most active channels have
spread spectral activations are across recording sites. It is obtained by computing th
between the minimum and maximum MA values (here we use h ¼ 10). Lower entr
activations, whereas higher values indicate distributed and spatially extended activ
frequency windows of interest in the peri-ictal period. Positive and negative times den
respectively. (C) Activation entropy (AE) across all possible combinations of time an

4

were preselected as candidates to be SOWs. Finally, for each frequency
band we kept only the first set of consecutive time windows fulfilling the
required criteria. Fig. 3D shows the selected SOWs for an exemplary
seizure. For each SOW, we identified the highly populated low-activation
bin. Then, contacts in higher activation levels were considered to be part
of the SOZ (Fig. 3E). This procedure was repeated for all selected SOWs,
and SOZ contacts were accumulated, thus obtaining a single SOZ per
seizure (Fig. 3F). Tuning the parameter values (number of activation
levels, GA threshold and AE threshold), the method described in this
section can be adapted to alternative settings to localize the focus of
spatially confined events in brain activity (the SOZ in the epileptic
seizure scenario) and to extract the temporal and spectral features of
those events (the SOWs in the epileptic seizure scenario).
al oscillations. Exploration of spectral activations in different frequency and time
ctivation) and MA histograms (with h ¼ 10 bins) for an exemplary selection of
e-frequency windows (12–31 Hz, 0–20 s; 107–130 Hz, 0–100 ms) result in very
z, 0–28 s) shows a uniform channel activation, indicating that averaged high-
itability of a given time-frequency window for SOZ detection. The global acti-
and time window. It is defined as the weighted average MA over contacts, where
a higher impact on the final value). The activation entropy (AE) quantifies how
e Shannon’s entropy of the MA histogram with h bins homogeneously spaced
opies of the MA distribution indicate structured and spatially confined spectral
ations. (B) Global activation (GA) across all possible combinations of time and
ote time windows spanning from seizure onset into the ictal and pre-ictal epochs,
d frequency windows of interest in the peri-ictal period.



Fig. 3. Processing steps from SEEG broadband signals to SOZ detection. Identification of the most relevant seizure onset windows (SOW) and seizure onset zone (SOZ)
detection is illustrated with a seizure of patient 1. (A) Signals are band-pass filtered in pre-defined bands of interest spanning the whole spectrum. (B) The mean
spectral activation (MA) is obtained over different time windows and frequencies of interest using the Hilbert transform method and averaging instantaneous spectral
activations across time. (C) For each time-frequency window, the MA profile is characterized by two summary measures: the global activation (GA) and the activation
entropy (AE). (D) SOW detection is achieved by finding time-frequency windows that maximize GA under the constraint of low AE. Frequencies and time windows for
which GA is above the 95th percentile and the AE is below 0.5 are selected. Selected time-frequency windows are marked in red. (E) For each seizure onset window,
we identified the highly populated low-activation bin. Then, contacts in higher activation levels were considered to be part of the SOZ (AE-induced threshold marked
with a dotted red line). Active regions are marked in red in the bar plots. (F) Active regions are accumulated across all SOWs, thus obtaining a single SOZ (shaded in
red) for each seizure.
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2.2. Clinical applications

2.2.1. Ethics statement
All diagnostic and surgical procedures have been previously approved

by The Clinical Ethical Committee of Hospital del Mar (Barcelona, Spain).

2.2.2. Patient selection
We selected ten patients with pharmacoresistant temporal lobe epi-

lepsy that underwent stereo-EEG in the Epilepsy Monitoring Unit of
Hospital del Mar (Barcelona, Spain). Patient inclusion was based on the
following criteria: (a) that the seizure focus had been identified by the
epileptologists and (b) that ictal onset was confined to a reduced number
of contacts corresponding to an anatomical region. Demographic and
clinical information for all patients is summarized in Table 1. The
5

decision to implant depth electrodes, the decision of the targeted areas
and the implantation duration were based solely on clinical grounds and
independent of this study.

2.2.3. SEEG recordings
Recordings were obtained using 5 to 21 intracerebral multiple contact

microelectrodes (Dixi Medical, Besançon, France; diameter: 0.8 mm; 5 to
15 contacts, 2 mm long, 1.5 mm apart) that were stereotactically
implanted using robotic guidance (ROSA, Medtech Surgical, Inc). Be-
tween 56 and 126 contacts were implanted and recorded in each subject.
Fig. 1A shows the implantation scheme of patient 1. Signals were
recorded using a standard clinical EEG system (XLTEK, subsidiary of
Natus Medical) with 500 Hz of sampling rate, except for patient 3, where
a sampling rate of 250 Hz was used (Fig. 1B). SEEG recordings from a



Table 1
Main data of patients included in the study.

Patient Gender/
Age

Epilepsy Side Duration
(years)

Electrodes
(left)

Number of
recording sites

Number of sites
within the SOZ

Analyzed
seizures

MRI Surgery Treated structure Outcome
(Engel’s
class)

Follow-up
(years)

1 F/27 TLE R 10 5(0) 54 5 8 negative R TATL Temporal pole, amygdala and head of
hippocampus

Ia 6

2 F/30 TLE L 25 7(7) 67 9 8 negative SAH temporal pole, inferior half of amygdala
and anterior 1/3 of hippocampus

Ic 6

3 F/55 TLE L 40 6(6) 59 6 1 negative L TATL temporal pole, amygdala and head of
hippocampus

Ib 6

4 M/29 TLE R 9 0(0) 95 11 8 negative NO Ia 5
*5 M/43 TLE R 42 15(0) 125 3 5 FCDIIIa.

Arachnoid Cyst.
R TATL temporal pole, amygdala and 2/3 of

hippocampus
Ia 3

6 M/26 TLE R 11 7(0) 78 11 7 R amygdala
enlargement

RF-TC temporal pole, amygdala, entorhinal
cortex and fusiform gyrus

Rp (Ib) 4

7 M/20 TLE L 12 15(15) 122 6 7 negative RF-TC anterior and posterior superior temporal
gyrus, transverse temporal gyrus and
supramarginal gyrus

Rp (Ib) 4

8 M/40 TLE L 2 8(8) 85 5 7 L temporal polar
blurring

RF-TC temporal pole and hippocampal head uRp (III) 4

9 F/52 TLE L 45 10(8) 104 8 6 gliosis near R
craniotomy

L TATL temporal pole, inferior half of amygdala
and anterior 1/3 of hippocampus

Ib 5

10 F/40 TLE L 16 10(8) 107 14 10 L posterior
hippocampal
lesion

L TATL 2/3 of amygdala, anterior 2/3 of
hippocampus

III 6

F ¼ female; M ¼ male; TLE ¼ temporal lobe epilepsy; R ¼ right; L ¼ left; FC ¼ frontal cingulate; R FC ¼ right frontal cingulate; L FC ¼ left frontal cingulate; A ¼ amygdala; Ha ¼ anterior hippocampus; Hp ¼ posterior
hippocampus; TP ¼ temporal pole; EC ¼ entorhinal cortex, OFCm ¼ mesial orbitofrontal cortex; TGi ¼ inferior temporal gyrus; PHCp ¼ posterior parahippocampal cortex; W¼Wernicke’s area; TOJ ¼ temporal occipital
junction; FBC ¼ frontal basal cortex; MS ¼ motor strip; TCl ¼ lateral temporal cortex; OCm ¼ mesial occipital cortex; FS ¼ focal seizure; w ¼ with; wo ¼ without; CA ¼ consciousness alteration; TATL: Tailored anterior
temporal lobectomy; RF-TC¼ Radiofrequency thermocoagulation; SAH¼Selective amygdalohyppocampectomy; Rp¼ Responsive; uRp¼ Unresponsive; NO¼ not-operated. *Patient 5 was initially responsive to RF-TC, but
experienced seizure relapse two years after the procedure. He then underwent resective surgery, after which achieved seizure freedom (Engel I) with a follow-up of 3 years.
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total of 67 spontaneous seizures were collected and analyzed. Seizure
onset and termination times of each seizure were independently marked
by two epileptologists (A.P. and R.R.) and a consensus decision was
reached. For each seizure we selected the marked ictal epoch together
with 60 s of pre-ictal baseline activity. Artifacted channels were identi-
fied by visual inspection and removed prior to data analysis. SEEG signals
were primarily analyzed in the referential recording montage. A
broadband-pass filter (FIR, filter band [1,165] Hz) was used to remove
slow drifts and aliasing effects. We also used a notch FIR filter at 50 Hz
and its harmonic frequencies to remove the power line interference.

2.2.4. Clinical benchmark: Seizure onset zone and post-surgical outcome
After electrode implantation and monitoring, SOZ was identified two

epileptologists (A.P. and R.R.) using visual inspection (percent inter-rater
agreement of 0.97 and Cohen’s kappa score of 0.80, with N ¼ 906 total
recording sites). For our study, we selected sites that were identified at
least by one of the two epileptologists. In each patient, ictal activity was
found to start in 3–14 channels that were marked as being part of the
SOZ. In total, 78 recording sites were defined as the SOZ across patients,
which accounts for 9% of the 906 implanted contacts. Surgical resection
or radio-frequency thermocoagulation (RF-TC) was planned based on
individual SEEG evaluations. At the time of submission (June 2019),
Patients 1–3 had achieved seizure freedom after surgical resection (Engel
I) with a follow-up period of 6 years. Patient 4 achieved seizure freedom
after electrode explantation without need of resective surgery (Engel I)
with a follow-up of 5 years. Patient 5 was initially responsive to RF-TC
(Bourdillon et al., 2017), but after seizure relapse underwent resective
surgery, after which achieved seizure freedom (Engel I) with a follow-up
of 3 years. Patients 6, 7 and 8 underwent only RF-TC. Patients 6 and 7 are
seizure free (Engel I) with a follow-up of 3 years. Patient 8 was initially
responsive to RF-TC showing a seizure reduction larger than 50%, but
relapse occurred 2 years after the procedure. Resective surgery was not
an option for this patient due to cognitive risks. Patient 9 achieved
seizure freedom after surgical resection (Engel I) with a follow-up period
of 5 years. We also included one patient (patient 10) in which the
outcome was not successful (Engel III) because the brain resectomy failed
to completely remove the identified seizure focus.

2.2.5. Method validation: Statistical and stability analysis
We used our algorithm to obtain the SOZ contacts in each seizure

separately. For each patient, the SOZ was defined by accumulating all
seizure-specific detected SOZ regions (Supplementary Fig. 2A). In order
to assess the performance of our method, we compared the SOZ given by
the algorithm with the SOZ marked by epileptologists during diagnosis
(clinical benchmark). For each patient, we computed the sensitivity and
specificity of the algorithm output (Supplementary Fig. 2B; see Fig. 5A
for results). In order to quantify the localization error, we computed the
spatial distance between missed SOZ contacts (false negatives) and the
SOZ delineated by our method (Supplementary Fig. 2C).

Then, we ran a stability analysis to assess the dependence of the re-
sults on the parameters of the algorithm and to validate our parameter
choices (number of activation levels used to discretize the MA profile h¼
10, GA threshold ¼ 95th percentile, AE threshold ¼ 0.5). On one hand,
we studied the effect of the GA and AE thresholds by computing the
accuracy of the method as the threshold values were varied (see Fig. 5B
for results). Dependence on the two thresholds was tested independently
of each other. Specifically, we computed the sensitivity and the speci-
ficity of the method as a function of the GA threshold (from 0 to 100)
with AE fixed around its primary value (0.5). For each value of the GA
threshold, we ran the algorithm multiple times (AE threshold values in
the range 0.4–0.6, step ¼ 0.01, N ¼ 20) and computed the average and
the standard deviation of the sensitivity and specificity across the
different runs. The same procedure was repeated to assess the perfor-
mance as a function of the AE threshold, while keeping the GA threshold
fixed around its primary value (95). For each value of the AE threshold,
we ran the algorithm multiple times (GA threshold values in the range
7

92–98, step ¼ 1, N ¼ 6) and computed the distribution of accuracies
across runs. On the other hand, we assessed the effect of the binning of
the MA profile on the method performance (see Fig. 5C for results).
Specifically, we computed the sensitivity and specificity of the method as
a function of the number of bins used to compute the AE quantifier (see
equation (2)).

This procedure was primarily done with SEEG signals in the
monopolar configuration and with positive times (ictal period). We then
compared the accuracy of the SOZ detection algorithm under different
recording configurations (monopolar vs. bipolar) and time periods (ictal
vs. pre-ictal) (see Fig. 6 for results). In order to avoid confounders
introduced by the threshold choices, we computed the accuracy (sensi-
tivity, specificity) curves of the algorithm as a function of the threshold
values in each case separately. Then, we extracted and compared the area
under the curve (AUC) across conditions as a threshold-independent
measure of the method performance.

Finally, to relate the results of our method with validated post-
operative information, we subselected patients (N ¼ 5) that underwent
resective surgery and had an Engel I post-surgical outcome (see Fig. 7 for
results). For this subset of patients, we defined three regions of interest:
(a) the seizure onset zone (SOZ), (b) the resected zone (RZ), consisting of
all recording sites that were surgically ablated, and (c) the union of the
two previous regions, consisting of all SOZ and/or RZ sites (SOZ þ RZ)
and therefore representing all putative sites with a critical role in the
generation and/or spread of the patients’ seizure. For each of these re-
gions of interest, we assessed the prediction power of the variable MA
when considered only in seizure onset windows. In particular, we first
normalized the MA values within each SOW to allow for cross-window
comparison. For each patient, we averaged all normalized MA values
across all SOWs of all seizures, thus defining a single normalized MA
index (nMA) per patient’s site. By setting a cutoff value on the nMA
index, we defined a binary classifier that was then compared to each
region of interest. In each case, the predictive value of the classifier was
assessed by extracting the area under the curve (AUC) per patient.

2.2.6. Seizure onset time detection with continuous GA
Although out of this work’s main scope, we wished to assess whether

our novel quantifier GA could be used to automatically identify seizure
onset times. To do so, we used a continuous version of GA in the
broadband spectrum combined with the Page-Hinkley algorithm (Page,
1954; Hinkley, 1971) for detecting change-points in random quantities
(see Supplementary Information for details on the algorithm and how we
set its parameter values). For each patient, we computed the fraction of
seizures in which the algorithm yielded a detection time and we quan-
tified the distance between the onset times given by clinicians and the
onset time detected by the algorithm (see Supplementary Fig. 6 for
results).

2.3. Data and code availability

Due to institutional restrictions, the data that supports the findings of
this study can be accessed only with a data sharing agreement. The code
used in this study is available from the corresponding author upon
request. Some processing tools used in this work have been publicly
released as an open-access Python package (Epylib v1.0: https://gith
ub.com/mvilavidal/Epylib).

3. Results

3.1. Locally enhanced oscillations in the transition from pre-ictal to ictal
dynamics

In all studied patients and seizures, we computed all channels’ MA
activation in the preselected frequencies and time windows of interest
and extracted the GA and AE from the MA profiles. We first studied the
extent to which both variables were providing redundant information.

https://github.com/mvilavidal/Epylib
https://github.com/mvilavidal/Epylib
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For each seizure, we computed the Spearman correlation coefficients
between the two variables. This computation yielded small-medium
correlation values (Spearman’s r ¼ �0.4 � 0.3, mean � standard devi-
ation across N¼ 67 seizures, 91% of significant outcomes after correction
for multiple comparisons at the familywise error rate of 0.01, see Sup-
plementary Table S1), confirming that both variables were providing
non-redundant information.

In this stage, we sought to characterize differences between the pre-
ictal and ictal periods arising in the joint (AE,GA) empirical distribu-
tion at the group level (see Supplementary Information for details). To
this aim, we normalized all GA values using the percentile score in each
seizure and period (ictal, pre-ictal) and pooled all (AE,GA) values across
seizures. A large number of ictal windows were found to cluster in the
region with GA>80 and AE<0.5 (Supplementary Fig. 3A). On the other
hand, pre-ictal windows exhibited a more sparse distribution of (AE,GA)
values, with an average trend of higher AEs and lower GAs (Supple-
mentary Fig. 3B). In particular, the region used for SOW detection in this
study was GA>95 and AE<0.5 (See Materials and Methods). Then, for
each seizure included in the study (a total of N ¼ 67) we compared the
fraction of time-frequency windows satisfying both conditions with
chance level (see the Supplementary Information for details). In both
periods, the fraction of windows with GA>95 and AE<0.5 was found to
be significantly above chance level (Supplementary Fig. 4), being this
trend higher in the ictal period. Hence, we hypothesize that this associ-
ation between very high and spatially confined activations is associated
with ictal onset and constitutes an a posteriori validation of the rationale
behind the procedure that we propose.

3.2. Seizure onset window detection

In 88% of the analyzed seizures (59 out of 67) the method was able to
identify time-frequency windows satisfying the required criteria on the
magnitudes of the variables GA and AE. In the remaining eight seizures
no window fulfilled the conditions due to a number of reasons, including
low spectral activations below the minimum required threshold of 3
standard deviations with respect to the pre-ictal baseline (1 seizure),
widespread simultaneous activations that did not allow for a confined
region to be safely identified (five seizures) or large pre-ictal activations
comparable to the ictal activity itself (two seizures). The latter was the
case of patient 5. Reviewing of the SEEG recordings from the two dis-
carded seizures revealed that ictal onset was indeed preceded by
continuous ictal-like activity.

3.3. Seizure onset windows unveil characteristic electrophysiological
signatures

In each seizure, the SOWs were qualitatively found to pinpoint the
characteristic frequency and time windows of the seizure onset patterns.
As an example, in the first seizure of patient 1, the algorithm selected the
following SOWs: 107–130 Hz during the first hundreds of milliseconds
and 12–31 Hz between 10 and 20 s. Regions of the posterior and anterior
hippocampi were selected as being inside the SOZ. Inspection of the
electrophysiological activity recorded around seizure onset revealed that
the output of the method was qualitatively describing the seizure onset
patterns (Fig. 4A).

SOWs were found to be heterogeneous across patients and, in some
cases, even across seizures of the same patient. For each time-frequency
window of interest, we computed the fraction of seizures for which that
window was a SOW (Supplementary Fig. 5). The most common SOWs
were found to be in the frequency range 12–31 Hz with end times
spanning from 10 to 30 s after seizure onset. These SOWs were found in
approximately 50% of all analyzed seizures, corresponding to low-
voltage fast-activity (LVFA) combined with rhythmic spikes (RS), as
seen in the first seizure of patient 1. These were followed by SOWs cor-
responding to slower activity at 8–12 Hz, appearing in approximately
25% of the seizures. Of particular interest was the SOW at 107–130 Hz
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during the first milliseconds after seizure onset, appearing in around 15%
of the seizures, which is consistent with the literature about HFOs being a
good biomarker of pathological epileptic activity (Murphy et al., 2017).

Additionally, for each patient and frequency of interest, we
computed the fraction of seizures in which that particular frequency
appeared to be part of the SOW. Roughly, three different frequency
distributions could be identified within our cohort. Fig. 4B shows these
distributions for three exemplary cases and the seizure onset patterns
they correspond to as described in (Lagarde et al., 2016). In patient 1
the most relevant frequencies were found to be between 4.2 and 12 Hz.
In this case, seizure onset is characterized by LVFA þ RS activity that
becomes particularly visible around 10 s after seizure onset. In some
cases, fast discharges (between 110 and 150 Hz) have also a role
during the first milliseconds of the ictal period, while in others
rhythmic slow waves (RSWs) in the θ band (4–8 Hz) can be observed.
Seizure onset in patient 5 was found to be characterized by very slow
spiking activity (~1 Hz) of large amplitude in between 10 and 20 s
after seizure onset, that becomes faster (up to ~4–8 Hz) as the seizure
progresses. Patient 6 exhibited a much more spectrally diffuse activity
(ranging from 50 to 150 Hz in most seizures) of very low amplitude
that becomes sufficiently high for SOZ discrimination around 20 s after
seizure onset.

3.4. Seizure focus prediction

Patient specific sensitivities and specificities are reported in Fig. 5.
The average sensitivity of the method across patients was 0.94 � 0.03
(mean � standard error of the mean), with an average specificity of 0.90
� 0.03 (mean � standard error of the mean). In patients 1, 3, 5, 7, 8, 9
and 10 all SOZ regions were identified by our method (sensitivity¼ 1). In
the remaining cases (patients 2, 4 and 6) false negatives (SOZ contacts
mistakenly marked as non-epileptogenic) lied at most 1 contact (i.e. 1.5
mm) apart from true positives (regions correctly marked as
epileptogenic).

3.5. Stability analysis

Results of the stability analysis with respect to the GA and AE
thresholds are shown in Fig. 5B. The threshold choice was found to have
a small effect on the specificity values (above 0.7 for all threshold
values). The primary value used for the GA threshold (95th percentile)
was found to lie at the onset of the sensitivity function stabilization,
yielding an optimal trade-off between sensitivity and specific. On the
other hand, the AE threshold (0.5) was found to lie on a plateau of the
performance functions. These results confirm the validity of the theo-
retical derivations behind our value choices.

The effect of the number of activation levels used to compute the AE
quantifier is shown in Fig. 5C. This parameter was found to have a major
impact on the sensitivity of the algorithm. Its selected value (10) was
found to lie on a plateau of sensitivity, thus confirming our hypothesis
that our choice captures the richness of channel’s MA distribution upon
seizure onset.

3.6. Comparative performance between monopolar and bipolar
configurations

SOZ detection and stability analysis were primarily done with SEEG
signals in the monopolar configuration. The whole analysis was then
repeated using the bipolar configuration. In order to compare the level
of performance in the two settings independent of the selected algo-
rithm working point, we computed the patient-average sensitivity and
specificity curves as a function of the thresholds in each configuration
and compared their AUCs (Fig. 6A). No relevant differences were
found in terms of specificity. Conversely, the algorithm was found to
be significantly more sensitive to SOZ regions in the monopolar
configuration. In particular, the relative AUC of the sensitivity as a



Fig. 4. Seizure onset windows unveil epileptogenic pattern signatures. (A) Detail of the seizure onset pattern in a seizure of patient 1. We show electrophysiological
activity recorded at two SOZ contacts (HP1, HA1) and two contacts outside the SOZ (A1, F1). Seizure onset is marked with a red vertical line. As suggested in Fig. 3,
the seizure is initiated at a hippocampal level with rapid discharges (~110 Hz) of very low amplitude in the first hundreds of milliseconds that are particularly clear in
HP1. This activity is followed by low-voltage fast-activity (LVFA) at 12–31 Hz that becomes visible 5 s after seizure onset and that increases in amplitude as the seizure
progresses. Activations observed at 12–31 Hz are in fact a combined effect of LVFA activity (~30 Hz) together with slow rhythmic spikes (RS) (~15 Hz) of high
amplitude particularly observable between 10 and 20 s. This activity then propagates into other regions and is no longer specific to SOZ regions (not shown). (B)
Seizure onset frequencies along with their corresponding seizure onset patterns for three representative patients with 8, 5 and 7 seizures, respectively. (Left) For each
patient and frequency of interest, the bar height indicates the fraction of seizures in which the frequency appeared in at least one SOW. (Right) In each case, we show
the electrophysiological pattern recorded at an exemplary SOZ site after seizure onset for a given seizure. Seizure onset is marked with a red vertical line. In patient 1
seizures typically start with LVFA (~30 Hz) combined with RS (~10 Hz). In the example, rhythmic slow waves (RSWs) in the θ band (4–8 Hz) are also observed. In
patient 5 seizure onset is characterized by very slow spiking activity (~1 Hz) of large amplitude that becomes faster (up to ~4 Hz) as the seizure progresses. Patient 6
has a much more spectrally diffuse activity (50–150 Hz) of very low amplitude. As seen in the example, there is also a very slow wave or baseline shift that was not
detected by our method.
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function of the GA threshold was found to be 0.98 � 0.01 in the
monopolar configuration, while it dropped to 0.84 � 0.01 in the bi-
polar configuration (mean � standard deviation across different runs
of the algorithm with AE fixed in the range 0.4–0.6). On the other
hand, while varying the AE threshold the relative AUC of the sensi-
tivity was 0.85 � 0.02 in the monopolar configuration and 0.70 � 0.03
in the bipolar setting (mean � standard deviation across different runs
of the algorithm with GA fixed in the range 92–98).
9

3.7. Focus prediction in the pre-ictal period

Additionally, we assessed the amount of SOZ predictability carried in
the pre-ictal activity. We repeated the same analysis described in the
previous sections using pre-ictal time windows (i.e., negative times from
�30 to 0 s) in the monopolar setting. With the primary values of the
thresholds, the patient-average sensitivity and specificity of SOZ locali-
zation in the pre-ictal period were lower than in the ictal period: 0.8 �
0.1 and 0.77� 0.04 (mean� standard error of the mean across patients),
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Fig. 5. Validation of the method: SOZ detection accuracy and stability analysis. (A) Performance of the SOZ detection algorithm. In each patient, we localized the SOZ
using our algorithm and compared the classification given by the algorithm with the clinical benchmark provided by clinicians. The figure reports sensitivities and
specificities at the subject and group levels. The average sensitivity of the method across patients was 0.94 � 0.03 (mean � standard error of the mean). The average
specificity was 0.90 � 0.03 (mean � standard error of the mean). Only in patients 2, 4 and 6 the identification was not complete. However, false negatives (SOZ
contacts mistakenly marked as non-epileptogenic) lied at most 1 contact (i.e. 1.5 mm) apart from true positives (regions correctly marked as being inside the SOZ). (B)
Stability analysis I (variation of the thresholds). The figures show the patient-average accuracy of the SOZ detection algorithm as a function of the two threshold
conditions (GA and AE). (Left) Accuracy (sensitivity and specificity) of the detection algorithm as a function of the GA threshold when AE is fixed around 0.5. For each
value of the GA threshold, we ran the algorithm multiple times (AE threshold values in the range 0.4–0.6, step ¼ 0.01, N ¼ 20 runs). The solid lines and shaded areas
represent the average accuracy and its standard deviation, respectively, across the different runs. (Right) Accuracy (sensitivity and specificity) of the detection al-
gorithm as a function of the AE threshold when GA is fixed around 95. For each value of the AE threshold, we ran the algorithm multiple times (GA threshold values in
the range 92–98, step ¼ 1, N ¼ 6). The solid lines and shaded areas represent the average accuracy and its standard deviation, respectively, across the different runs.
Vertical lines mark the working point of the algorithm in our study (GA and AE thresholds set at 95th percentile and 0.5, respectively), for which the algorithm attains
high accuracy values. (C) Stability analysis II (effect of the binning of the MA profile). Patient-average accuracy (sensitivity and specificity) of the SOZ detection
algorithm as a function of the number of bins used to compute the AE quantifier (see equation (2)). The solid lines and shaded areas represent the average accuracy
and its standard deviation, respectively, across different patients. The vertical lines indicate the actual number of bins used in this study (h ¼ 10), for which the
algorithm attains high accuracy values.
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respectively. Comparison of AUCs of the accuracy curves as the thresh-
olds were varied yielded the same results (Fig. 6B).
3.8. Method validation with post-surgical outcome

For patients that underwent resective surgery and had a very good
post-surgical outcome (Engel I, N ¼ 5), the binary classifier induced by
nMA indices in the SOWs selected by the algorithm was compared across
the three regions of interest (SOZ, SOZ þ RZ and RZ). ROC curves for
each region of interest are shown in Fig. 7. SOZ prediction achieved very
high AUC values: 0.997 � 0.001 (mean � standard error of the mean).
When compared to RZ þ SOZ and RZ, the classifier achieved lower but
still notable predictive power values (0.79 � 0.05 and 0.69 � 0.08,
respectively), indicating that the nMA variable carries relevant infor-
mation not only for SOZ identification, but also for RZ prediction.
3.9. Seizure onset time detection with continuous GA

The results of seizure onset detection with the Page-Hinkley algo-
rithm combined with the continuous version of GA are shown in Sup-
plementary Fig. S6. For patients 1–8, the Page-Hinkley algorithm
performed very well, yielding detection times in 96% of N ¼ 51 seizures
with an average time lag of 2 � 7 s (mean � standard deviation across N
¼ 51 seizures) with respect to the seizure onset time provided by epi-
leptologists. Seizure onset detection was very poor in patient 9 (detection
times found in 5 of 6 seizures with an average delay of 60� 30 s, mean�
standard deviation across N ¼ 5 seizures). In patient 10, detection times
were found only in 3 of 10 seizures with an average delay of 47 � 30 s
(mean � standard deviation across N ¼ 10 seizures). Results were stable
across different values of the algorithm parameters in most cases (pa-
tients 1–9). In patient 10, the low performance of the algorithm was due
to activations of lowmagnitude upon seizure onset that could be detected
by relaxing the detection conditions. Optimization of the algorithm pa-
rameters for this particular case yielded better detection times (average
time lag of 0 � 21 s, mean � standard deviation across N ¼ 10 seizures).

4. Discussion

We proposed a novel methodology to automatically estimate the
localization of spatially confined events in brain activity using the low
entropy properties of emerging neural oscillations associated to those
events. Our analysis was motivated by the problem of SOZ identification
from intracranial EEG signals in patients with pharmacoresistant epi-
lepsy. In this context, spatially confined activations with respect to a pre-
ictal baseline were taken as signatures of epileptogenic tissue and were
used to localize the seizure focus. We tested the algorithm’s performance
on a group of ten patients with varied seizure onset patterns and follow-
up periods that range from 3 to 6 years. In each case, the underlying time-
frequency windows were found to pinpoint the characteristic spectral
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features (frequency and duration) of onset patterns. Additionally, we
were able to relate our findings with the postsurgical information of
patients that attained seizure freedom after resective surgery using the
core measure of the study as a putative predictor of the resected zone.
4.1. The global activation (GA) and activation entropy (AE) capture
landmarking features of seizure initiation

Based on previous studies (Bartolomei et al., 2008; David et al., 2011)
we defined ictal-driven activity as an increase in signal power from
pre-ictal to ictal epochs. In particular, we used the mean activation (MA)
measure (Vila-Vidal et al., 2017), which quantifies the average spectral
activation of each targeted brain structure for pre-defined frequency and
time windows of interest (Fig. 1). However, while most studies con-
strained spectral activations to occur in preselected frequency bands, our
method automatically infers the characteristic temporal scale and fre-
quency range of locally enhanced oscillations in each case, thus maxi-
mizing the amount of information relevant for SOZ detection in a patient
and seizure-specific context. Hence, by avoiding such frequency con-
straints, the method accounts for the intrinsic variability of initiation
patterns (Lagarde et al., 2016) and can flexibly adapt to the potential
heterogeneities across different seizures of the same patient.

The proposed automated SOZ detection is performed using a two-
stage procedure (Fig. 3). First, the most relevant frequency and time
windows of interest (the so-called seizure onset windows, SOW) are
extracted from the intracranial EEG signals. The algorithm relies on
finding time-frequency windows in the transition between pre-ictal and
ictal states that yield maximal and spatially confined spectral activations,
thus ensuring that propagation has not started and that SOZ contacts can
be naturally discriminated from other sites. Then, the most active
channels are selected and accumulated over seizures to define the SOZ.
The critical step of our analysis is the definition of two measures (Fig. 2),
namely the global activation (GA) and the activation entropy (AE), that
are later jointly optimized to find the relevant time-frequency window
for SOZ localization. On one hand, GA is used to quantify maximal ac-
tivations with respect to the pre-ictal basal state. Note that in the case
where one contact has a very large MA compared to the others, the global
activation coincides with the maximum of the MA distribution. However,
the robustness of this measure makes it preferable when compared to a
summary statistic that takes only one value. On the other hand, the AE is
used to characterize how spread spectral activations are across recording
sites, independent of the magnitude of these activations, a feature that is
strictly measured by GA. To compute the AE, the MA profile is dis-
cretized, thus defining a finite number of activation levels. Based on our
previous work (Vila-Vidal et al., 2017), we decided to use h ¼ 10 bins to
capture the richness of channels’ activations.

Although used with the mean activation (MA), the two measures and
the optimization procedure that we described here are rather general and
can be used in combination with other variables to find spatially confined



Fig. 6. Patient-average accuracy of the SOZ detection algorithm under different recording configurations and time periods. Because the optimal working point of the
detection algorithm might differ under different conditions, a fair comparison across conditions is achieved by computing the accuracy of the algorithm as a function
of the threshold values and extracting the area under this curve (AUC) in each condition. The accuracy curves are computed akin to those in Fig. 5B. For each threshold
type, the AUC is reported as a fraction of its theoretical maximum (100 and 0.4 for the GA and AE thresholds, respectively). (A) Performance comparison between
mono- and bipolar referencing. While there is no significant difference in terms of specificity between monopolar and bipolar configurations, the sensitivity of the
method is significantly higher in the monopolar configuration. (B) Performance comparison between pre-ictal and ictal time periods. Although the method has a better
performance in the ictal period, high sensitivities and specificities indicate that the pre-ictal period contains sufficient information for SOZ prediction.
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Fig. 7. ROC curves for the prediction of SOZ and RZ regions in Engel I patients.
For patients that underwent resective surgery and attained very good post-
surgical outcome (Engel I, N ¼ 5 patients), we computed the average nMA
over all seizure onset windows, thus obtaining a single nMA index per site. We
then computed the ROC curves when using these indices to predict the SOZ, RZ
þ SOZ and RZ regions, respectively. For each region, the solid line represents
the average performance across patients, while the shaded area depicts the
standard error of the mean. AUC values are also reported in the figure (mean �
standard error of the mean). The results suggest that the variable nMA carries
relevant information for RZ prediction in patients that attained seizure freedom
after resective surgery.
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events. Specifically, the methodology that we developed may be useful in
a number of settings to unravel the characteristic time and frequency
scales (pattern signatures) of localized abrupt changes in brain activity
during events of interests of both cognitive (e.g. stimuli presentations)
and clinical (e.g. brain activity after a stroke) nature.

We have shown that ictal onset is characterized by a general shift
towards lower AEs and higher GAs. More specifically, we computed the
density of (AE,GA) across seizures in the ictal period and pre-ictal period.
A highly populated cluster defined by very high GAs and low AEs could
be clearly identified in the ictal epoch. Based on this result, the method
finds those windows with maximal global activations (large GA) under
the constraint that these activations are spatially confined to a few re-
gions (low AE). These windows are then used to reliably find SOZ sites
(Fig. 3). Yet, the specific choice of the thresholds (GA above the 95th
percentile and AE<0.5) is rather arbitrary and deserves to be further
discussed. We could have used a clustering algorithm to extract the
specific boundaries of the dense cluster. However, this would yield more
relaxed conditions that would result in a decrease in specificity. Hence,
we chose to manually set the thresholds and tune them depending on the
desired sensitivity and specificity of the output. Additionally, we did a
surrogate analysis and compared the fraction of windows satisfying the
required criterion with chance level. This analysis showed a strong cor-
relation between the conditions both in the pre-ictal and ictal periods. We
hypothesize that this correlation between very high and spatially
confined activations is associated with ictal events and constitutes an a
posteriori validation of the rationale behind the procedure that we pro-
pose. Moreover, a non-negligible consequence of the thresholding step is
that seizures where SOZ discrimination cannot be guaranteed with a
minimum level of confidence are discarded beforehand, thus ensuring
meaningful SOZ detections. Discarded seizures can be further interpreted
and might offer complementary insight during the pre-surgical evalua-
tion. Although the treatment of such cases is out of the scope of this study,
clinical reviewing of the SEEG recordings from patient 5 showed that the
two seizures that had been rejected were indeed preceded by ictal-like
activity.
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4.2. Clinical relevance of seizure onset windows in terms of ictal patterns

A primary aspect of our analysis is that automatization does not come
at the expense of interpretability, as the method provides an output that
can be fully read in clinically terms (Fig. 4). As seen in (Lagarde et al.,
2016) there is a wide range of seizure onset patterns andwhile some have
a higher prevalence than others, high-frequency discharges cannot be
considered to be the only epileptogenic onset biomarker. We have shown
that the time-frequency windows selected by the method reliably char-
acterize a variety of electrophysiological seizure onset patterns. In
particular, we could isolate the high-amplitude low-frequency spiking
activity at 1 Hz that defines the start of the ictal events in one of the
analyzed patients.

4.3. Robustness of the method and performance comparison under
different conditions

SOZ detection was primarily done in the monopolar setting and using
time windows from ictal epochs (Fig. 5A). The average sensitivity across
patients was 0.94 � 0.03, with an average specificity of 0.90 � 0.03
(mean � standard error of the mean). SOZ detection was not complete
only in three patients (2, 4 and 6) but missed SOZ sites lied at most 1.5
mm apart from the delineated region. We also performed stability anal-
ysis on the three parameters of our algorithm (number of bins h, GA
threshold and AE threshold) to further validate the theoretical properties
backing our parameter choices (Fig. 5B and C). The specificity of the
method was found to be minimally dependent on the number of discrete
activation levels used to compute the AE. Our choice to use 10 levels was
proven effective in capturing the relevant properties of seizure activa-
tion, insofar h ¼ 10 lies in a plateau of maximal sensitivities for the SOZ
localization problem. We also studied the effect of thresholding the GA
and AE quantifiers on the performance of the detection algorithm. The
GA threshold (95th percentile) was found to lie at the onset of the
sensitivity function stabilization, while in a range of high specificities. On
the other hand, the AE threshold (0.5) lies on a plateau of the perfor-
mance function. As the conditions on GA and AE are relaxed more non-
SOZ sites are chosen. Despite being outside the SOZ, we hypothesize
that these sites might have a critical role in sustaining and propagating
epileptic activity in the early stages of the seizure. Overall, these results
constitute a validation of our parameter choices and show the robustness
of the method against variations of the parameters values.

Complementary to the main results, we further investigated the effect
of the recording referencing on the method performance (Fig. 6A). While
no significant differences were found in terms of specificity, the algo-
rithm was more sensitive to SOZ regions in the monopolar configuration.
Very few works have assessed the effect of the recording reference on
intracranial EEG analysis and they have mainly studied its impact on
connectivity measures (Arnulfo et al., 2015). To the best of our knowl-
edge, this is the first study to compare the performance between
monopolar and bipolar configurations for SOZ detection. The monopolar
referencing yields data contaminated by volume conduction and remote
field effects, while the bipolar montage averages out these effects offering
a more localized spatial resolution. Yet, we hypothesize that in the case of
a partially mapped SOZ, the monopolar configuration might be more
sensitive to capture the activity from the missed SOZ sites and thus
perform better when used to approximate the focus localization.

Additionally, we chose to explore the performance of the method in a
short pre-ictal period (Fig. 6B). Although the method has proven to have
a higher performance in the ictal period, the results bring evidence that
the pre-ictal period also carries information that might be of interest for
SOZ localization, as already seen in previous studies (Andrzejak et al.,
2015; Tauste Campo et al., 2018).

Post-operative validation in Engel I patients revealed the potential
predictive power of the variable nMA as a biomarker of the resected zone
when averaged across seizure onset windows (Fig. 7). This result suggests
that the features upon which the method is built characterize the
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generation, spread and maintenance of epileptic seizures. Yet, an average
predictive value (AUC) for the RZ of 0.69 � 0.08 (mean � standard error
of the mean) highlights the non-trivial relationship between the SOZ and
the whole epileptogenic zone, in line with previous studies (Lüders et al.,
2006; Huang et al., 2012; Rummel et al., 2015; Geier et al., 2015).
4.4. Study limitations

The number of patients satisfying sufficiently long post-operative
follow-up periods (10) constitutes the major limitation of this study.
Further research should be conducted to validate our algorithm with a
larger cohort of patients and beyond temporal lobe epilepsy. Addition-
ally, the proposed procedure should be tested in a variety of alternative
settings that involve the study of alterations in brain activity that are
consistently time-locked to an event (Luck et al., 2000; Lauchaux et al.,
2012; Kropotov, 2016).

5. Conclusions

The present study proposes a robust methodology to identify the
neural populations undergoing emerging functional or pathological
transitions in settings of both experimental and clinical relevance. Our
method achieved very high accuracy values when used to predict
seizure onset zone regions from peri-ictal SEEG recordings in focal ep-
ilepsy. Although our primary analysis relies on the detection of the
seizure onset time defined by the clinical neurophysiologists, we have
shown that our GA quantifier has the power to automatically predict
seizure onset times.

Overall, the proposed procedure could be used to extract the pattern
signatures and spatial localization of the brain response to events of in-
terest in a variety of settings of both clinical and cognitive relevance. For
example, in finding the brain sites that respond to electrical stimulation
or to drug administration, in the analysis of the brain reaction to cogni-
tive stimuli during a task paradigm, in studying the increase in connec-
tivity between distant regions when a stimulus is delivered, etc. In
particular, our framework could be easily integrated as a complementary
diagnostic tool with minimal computational costs for surgical planning,
reducing time-consuming SEEG revisions and improving the clinician
decision after pre-surgical evaluation.
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