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1 Supplementary figures
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Figure S1: Responsive paths in the first monkey. Percentage of responsive paths in all interarea
comparisons during 17 consecutive task intervals. Arrows in the title indicate the directionality
of the modulated paths. Vertical bars outline the intervals f1, f2 and pu period. Horizontal
dashed lines indicate significance level (α′ = 9.75%, where α′ = 2α(1 − α) + α2 and α =
5%). In green, percentages of responsive paths during the discrimination task. In grey,
percentages of responsive paths whose correlations were also significant for either the frequency
pair (f1 = 14Hz, f2 = 22Hz) or (f1 = 30Hz, f2 = 22Hz) during passive stimulation. Data
were obtained in 13 sessions (n = 13) from areas S1, primary somatosensory cortex; S2,
secondary somatosensory cortex; MPC, medial premotor cortex; DPC, dorsal premotor cortex;
M1, primary motor cortex, and were plotted for 17 consecutive intervals.
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Figure S2: Single-neuron vs. multiple-neuron measures in the first monkey. Comparison
between discrimination (green) and passive stimulation tasks (grey) across areas using the
average value of distinct measures over the ensemble of neurons with incoming responsive
paths. Vertical bars outline the intervals f1, f2 and pu period. Data were obtained in 13
sessions (n = 13) from areas S1, primary somatosensory cortex; S2, secondary somatosensory
cortex; MPC, medial premotor cortex; DPC, dorsal premotor cortex; M1, primary motor
cortex, and were plotted for 17 consecutive intervals when f1 = 30Hz and f2 = 22Hz. Error
bars (± SEM) denote the standard error of each measure. (A) Average firing rate. (B)
Average entropy. (C) Average (across the ensemble of neurons) sum of directed information
along incoming responsive paths. The shadowed grey area indicates the difference of this
measure between both tasks.
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Figure S3: Modulated paths in the first monkey. Percentage of modulated paths over respon-
sive paths in all intra- and interarea comparisons during 17 consecutive task intervals. In
green, percentages during the discrimination task. In grey, percentages during passive stim-
ulation. Arrows in the title indicate the directionality of the modulated paths. Vertical bars
outline the intervals f1, f2 and pu period. Horizontal dashed lines indicate the significance
level (α = 5%). The shadowed green area indicates the percentages of modulated paths above
significance level. Black circles indicate the intervals where the estimated percentage was
significantly different (Agresti-Coull confidence interval [1], α = 5%) from significance level.
Data were obtained in 13 sessions (n = 13) from areas S1, primary somatosensory cortex;
S2, secondary somatosensory cortex; MPC, medial premotor cortex; DPC, dorsal premotor
cortex; M1, primary motor cortex, and were plotted for 17 consecutive intervals.
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Figure S4: Relationship between modulated neurons and modulated paths in the first monkey.
(A) Comparison of the proportion of modulated neurons in all tested neuron pairs (“mod neu-
rons”), responsive (“mod neurons in responsive paths” ) and modulated paths (“mod neurons
in modulated paths” ). The black circle highlights that there was a significant correlation be-
tween modulated neuron and the existence of an own outgoing or incoming modulated path.
(B) Proportion of modulated paths whose starting point neuron or endpoint was a modulated
neuron in each recorded area. In red, percentage of outgoing modulated paths from modulated
neurons over all modulated outgoing paths from an area (“Mod paths from mod neurons’”).
In blue, percentage of incoming modulated paths to modulated neurons over all modulated
incoming paths to an area (“Mod paths to mod neurons’”). In dashed black, probability
that a modulated neuron was the starting point or endpoint neuron of a randomly selected
neuron pair (‘chance level”). Vertical bars outline the intervals f1, f2 and pu period. Data
were obtained in 13 sessions (n = 13) from areas S1, primary somatosensory cortex; S2, sec-
ondary somatosensory cortex; MPC, medial premotor cortex; DPC, dorsal premotor cortex;
M1, primary motor cortex, and were plotted for 17 consecutive intervals.
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Figure S5: Modulation classes during the discrimination task in the first monkey. Percentage
of modulation types in all interarea comparisons and task intervals above significant level
(α = 5%): percentages of ON-OFF modulations (significant only for f1 < f2, red), OFF-
ON modulations (significant only for f1 > f2, blue), and ON-ON modulations (significant
for both, orange). For reference, the total percentage of modulated paths were plotted in
a dashed black line. Arrows in the title indicate the directionality of the modulated paths.
Vertical bars outline the intervals f1, f2 and pu period. Data were obtained in 13 sessions
(n = 13) from areas S1, primary somatosensory cortex; S2, secondary somatosensory cortex;
MPC, medial premotor cortex; DPC, dorsal premotor cortex; M1, primary motor cortex, and
were plotted for 17 consecutive intervals.
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Figure S6: Modulated path delays during the discrimination task in the first monkey. Percent-
age of modulated path delays in all interarea comparisons and task intervals above significant
level (α = 5%): percentages of instantaneous correlations (0ms, magenta), percentage of mod-
ulated paths at delays within 10−70ms (yellow) and percentages of modulated paths at delays
within 80−140ms (cian). For reference, the total percentage of modulated paths were plotted
in a dashed black line. Arrows in the title indicate the directionality of the modulated paths.
Vertical bars outline the intervals f1, f2 and pu period. Data were obtained in 13 sessions
(n = 13) from areas S1, primary somatosensory cortex; S2, secondary somatosensory cortex;
MPC, medial premotor cortex; DPC, dorsal premotor cortex; M1, primary motor cortex, and
were plotted for 17 consecutive intervals.
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Figure S7: Single-neuron vs. multiple-neuron measures in the second monkey. Comparison
between discrimination (green) and passive stimulation tasks (grey) across four areas using
the average value of distinct measures over the ensemble of neurons with incoming responsive
paths. Data were obtained in 19 sessions (n = 19) from areas S1, primary somatosensory
cortex; S2, secondary somatosensory cortex; DPC, dorsal premotor cortex; and S1, primary
somatosensory cortex; S2, secondary somatosensory cortex; and M1, primary motor cortex
and were plotted for 17 consecutive intervals when f1 = 14Hz and f2 = 22Hz. Vertical
bars outline the intervals f1, f2 and pu period. Error bars (± 2SEM) denote the standard
error of each measure. (A) Average firing rate. (B) Average entropy. (C) Average (across
the ensemble of neurons) sum of directed information along incoming responsive paths. The
shadowed grey area indicates the difference of this measure between both tasks.
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Figure S8: Modulated neurons and paths in the second monkey. In green, percentages during
the discrimination task. In grey, percentages during passive stimulation. Arrows in the title
indicate the directionality of the modulated paths. Vertical bars outline the intervals f1, f2
and pu period. Horizontal dashed lines indicate significance level α = 5%. The shadowed
green area indicates the percentages of modulated paths above significance level. Black circles
indicate the intervals where the estimated percentage was significantly different (Agresti-Coull
confidence interval [1], α = 5%) from significance level. (A) Percentage of modulated neurons
over all responsive neurons in each recorded area. (B) Percentage of modulated paths over all
responsive paths in 10 intra- and interarea comparisons. Data were obtained in 19 sessions (n =
19) from simultaneous areas S1, primary somatosensory cortex; S2, secondary somatosensory
cortex; DPC, dorsal premotor cortex; and S1, primary somatosensory cortex; S2, secondary
somatosensory cortex; and M1, primary motor cortex, and were plotted for 17 consecutive
intervals.
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Figure S9: Additional results for the second monkey. (A) Relationship between modulated
neurons and modulated paths. Comparison of the proportion of modulated neurons in all
tested neuron pairs (“mod neurons”), responsive (“mod neurons in responsive paths” ) and
modulated paths (“mod neurons in modulated paths” ). The black circle highlights that
there was a significant correlation between modulated neuron and the existence of an own
outgoing or incoming modulated path. (B) Modulation classes during the discrimination task.
Distribution of modulated paths from intervals above significant level (α = 5%) into the classes
ON-OFF, OFF-ON and ON-ON.
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2 Glossary of terms

• Path: non-linear and (possibly) delayed directional correlation between two neurons. In

general, there is no direction defined over a path, but it has an starting point (influencing

neuron) and an endpoint neuron (influenced neuron). In this work, correlations are

computed using the directed information measure [2].

• Incoming path (to a neuron): a path whose endpoint is the neuron under consideration.

• Outgoing path (from a neuron): a path whose starting point is the neuron under con-

sideration.

• Responsive neuron: a neuron with significant entropy (permutation test, α = 5%) for at

least one frequency pair.

• Responsive path: a path between responsive neurons for which the value of the directed

information (permutation test, α = 5%) is significant for at least one frequency pair.

• Modulated neuron: a responsive neuron with significant differences (permutation test,

α = 5%) in its entropy between the sets of trials (f1 = 14, f2 = 22)Hz and (f1 =

30, f2 = 22)Hz.

• Modulated path: a responsive path with significant differences (permutation test, α =

5%) in the value of the directed information between the sets of trials (f1 = 14, f2 =

22)Hz and (f1 = 30, f2 = 22)Hz.

• ON-ON modulated path: modulated path with significant directed information for both

frequency pairs, (f1 = 14, f2 = 22)Hz and (f1 = 30, f2 = 22)Hz.

• ON-OFF modulated path: modulated path with significant directed information for

the frequency pair (f1 = 14, f2 = 22)Hz but non-significant for the frequency pair

(f1 = 30, f2 = 22)Hz.

• OFF-ON modulated path: modulated path with significant directed information for

the frequency pair (f1 = 30, f2 = 22)Hz but non-significant for the frequency pair

(f1 = 14, f2 = 22)Hz.

3 Estimation of the directed information

3.1 Notation

Let XT = (X1, . . . , XT ) and Y T = (Y1, . . . , YT ) be two random processes that describe the

time series xT = (x1, . . . , xT ) and yT = (y1, . . . , yT ). We shall use Xi to denote the i-th

11



component of XT and Xi
j = (Xi, . . . , Xj), i < j, to denote a subset of consecutive components

of XT . We shall denote the distribution of the joint process (XT , Y T ) as PXTY T with marginal

distributions PXT and PY T .

3.2 Introduction

The majority of methods that estimate information-theoretic quantities between two random

processes XT and Y T are based on the computation of the underlying joint probability dis-

tribution of a presumed jointly ergodic and stationary process (X ,Y). A commonly used

estimator in computational neuroscience is the plug-in estimator, which estimates the under-

lying joint distribution by tracking the frequency of string occurrences in an observed time

series [3, 4]. The main drawback of this estimator is the undersampling problem: since all

strings are assumed to be equally likely, the estimator requires a sufficiently large number of

trials to ensure convergence. Nonetheless, some bias reduction techniques have been proposed

to increase the convergence of this estimator [3, 5]. In this work, we follow a Bayesian ap-

proach based on the context-tree weighting (CTW) algorithm, [6, 7], which has been proved

to outperform the bias and the variance of the plug-in estimator1.

In the next sections we provide a general overview of the CTW method. Further im-

plementation details as well as properties of this method can be found in [6]. We start by

introducing the concept of tree source model upon which the algorithm is built.

3.3 Tree source model

We consider that sequences of a M -ary alphabet (in our case M=2) are generated by a tree

source of bounded memory D, which means that the generation of a symbol xt depends on

a suffix of its most recent D symbols xt−1
t−D. More formally stated, the probability of the

generated sequence is defined by the model (S,ΘS), where S is the suffix set consisting of

M -ary strings of length no longer than D, and

ΘS = (θs; s ∈ S) (1)

is the parameter space where θs , (θ0,s, θ1,s, . . . , θM−2,s). The suffix set is required to be proper

(suffixes in the set are not suffixes of other elements of S) and complete (every sequence has

a suffix in S). Then, we can define a mapping βS(·) by which every recent D symbols, xt−1
t−D,

are mapped to a unique suffix s ∈ S. To each suffix, there corresponds a parameter vector θs

that determines the next symbol probability in the sequence as

1An exhaustive study of the performance differences between the plug-in and the CTW estimator can be
found in [8].
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Pr
{
Xt = i|xt−1

t−D,S,ΘS
}

= θi,βS(xt−1
t−D) (2)

for i = 0, . . . ,M − 2, and

Pr
{
Xt = M − 1|xt−1

t−D,S,ΘS
}

= 1−
M−2∏

i=0

θi,βS(xt−1
t−D). (3)

The goal of the algorithm is to estimate the probability of any sequence generated by a

tree source without knowing the underlying model (S,ΘS), i.e, without knowing neither the

suffix set S nor the parameter space Θ.

Example: Let M = 2, D = 2 and consider the suffix set S = {00, 10, 1}. Then, the

probability of the sequence x7
1 = 0110100, where x1 = 0, x2 = 1, . . . , x7 = 0 given the past

symbols 10 can be evaluated as Pr
{
x7

1|S, θ00, θ10, θ1

}
:

Pr(0110100|10) =P (0|10) · P (1|00) · P (1|01) · P (0|11) · P (1|10) · P (0|01) · P (0|10)

=(1− θ10) · θ00 · θ1 · (1− θ1) · θ10 · (1− θ1) · (1− θ10),

where we used the mapping βS(10) = 10, βS(00) = 00, βS(01) = 1 (the sufix 01 is not in the

set of suffixes S, and we thus map it to the suffix one βS(11) = 1.

3.4 Bayesian approach

The context-tree weighting is a method of approximating the true probability of a T -length

sequence xT1 generated according to the true model (S?,θ?) with the mixture probability

P̂ (xT1 )=

∑

(S,ΘS)

w(S,ΘS)PS,ΘS (xT1 ), (4)

where w(·) is a weighting function over all tree models and PS,ΘS (xT1 ) is the probability of

generating the sequence xT1 according to the model (S,ΘS).

To approximate (4), we first make use of the concept of context tree. The context tree is

a set of nodes where each node is an M -ary string s with length l(s), and where l(s) is upper-

bounded by a given memory D. Each node s splits into M (child) nodes 0s, 1s, . . . , (M −
1)s. To each node there corresponds a vector of counts as = (a0,s, a1,s, . . . , aM−1,s) of the

number of times that a symbol is preceded by the string s. For a parent node s and its

children 0s, 1s, . . . , (M − 1)s, the counts must satisfy ai,s =
∑M−1

j=0 ai,js for every symbol

i = 0, . . . ,M − 1. Then, for every node with string s we estimate the probability that a

sequence is generated with the counts as. Counts in each node are updated by each new

13



observation xt, t = 1, . . . , T .

In general, the probability that a memoryless source with parameter vector θ = (θ1, θ2, . . . , θM )

generates a given sequence follows a multinomial distribution. By averaging this probabil-

ity over all possible values of θi, i = 1, . . . ,M , with a Dirichlet distribution we obtain the

Krichevsky-Trofimov (KT) probability estimator. A useful property of this estimator is that

it can be sequentially computed as P se (0, 0, . . . , 0) = 1 and

P se (a0,s, a1,s, . . . , ai−1,s, ai,s + 1, ai−1,s, . . . , aM−1,s) =
ai,s + 1

2

a0,s + a1,s + . . .+ aM−1,s + M
2

. (5)

Finally, we assign a probability to each node, which is the weighted combination of the

estimated probability and the weighted probability of its children:

P sw =




P sw = αP se (as) + (1− α)

∏M
i=1 P

is
w , 0 ≤ l(s) < D

P se (as), l(s) = D,
(6)

where α is typically chosen to be 1
2 .

3.5 Schematic version of the algorithm for an M−ary alphabet

For every t = 1, . . . , T , we use the context xt−1
t−D and the value of xt. Then, we track nodes

from the leaf to the root node along the path determined by xt−1
t−D.

• Leafs: Identify the leaf s that corresponds to xt−1
t−D in the context tree. Then

1. Counts update

Based on the value of xt, update as.

2. Estimated probability

Compute P se (as) using the Krichevsky-Trofimov estimator, which is defined recur-

sively as P se (0, 0 . . . 0) = 1 and for ai,s ≥ 0, i = 1, · · · ,M − 1,

P se (a0,s, a1,s, . . . , ai−1,s, ai,s+1, ai−1,s, . . . , aM−1,s) =
ai,s + 1

2

a0,s + a1,s + . . .+ aM−1,s + M
2

.

3. Weighted probability

For the leaf nodes, P sw = P se (as).

• Internal nodes: Using the path determined by the context xt−1
t−D,

REPEAT

1. Parent search

Identify the parent s of the previously tracked node.

14



2. Counts update

Based on the value of xt, update as.

3. Estimated probability

Compute P se (as) using as and the Krichevsky-Trofimov estimator.

4. Weighted probability

Compute P sw as

P sw = αP se (a0,s, a1,s, . . . , aM−1,s) + (1− α)
M∏

i=1

P isw ,

where α is typically chosen to be 1
2 .

UNTIL the root node is tracked.

• Probability assignment: Let λ denote the root node of the context tree. Then,

P̂ (xt) ≡ P λw(xn) is the universal probability assignment in the CTW algorithm. As a

result, we also obtain the conditional probability P̂ (xt1|xt−1
1 ) as:

P̂ (xt1|xt−1
1 ) =

P λw(xt1)

P λw(xt−1
1 )

.

Example: Consider the binary sequence x7 = 1011011 with past symbols x0
−2 = 101. We

evaluate the context tree for M = 2 and D = 3. Suppose that we are at time instance t = 1

where the context is 101 (Fig. S10). After observing the sequence up to t = 7, we obtain

counts as = (a0,s, a1,s) for each context tree node (Fig. S11). From the leafs to the root node

(λ), we recursively compute the weighting probabilities and provide the probability assignment

P̂ (x7) (Fig. S12).
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Figure S10: Context tree with the path determined by the context x0
−2 = 101 in red.
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Figure S11: Counts update up to x7 = 1.
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1, and probability assignment, P̂ (x7

1) .

3.6 Estimator based on the CTW algorithm

The estimator of the directed information that we employ is built upon the CTW algorithm [7].

Then, given a simultaneous observation (xT , yT ), we must assume that it is a realization of a

jointly stationary finite-alphabet Markov chain (X ,Y) with memory D to ensure estimation

consistency. The formula to compute the estimator is the following:

Î(X → Y) ,
1

T

T∑

t=1

∑

yt

P̂ (Yt = yt
∣∣Xt

t−D = xtt−D, Y
t−1
t−D = yt−1

t−D)

× log
P̂ (Yt = yt

∣∣Xt
t−D = xtt−D, Y

t−1
t−D = yt−1

t−D)

P̂ (Yt = yt
∣∣Y t−1
t−D = yt−1

t−D)
, (7)

where the probabilities are estimated using the context-tree weighting method. We next

summarize the main steps of this computation:

1. Estimation of the probabilities P̂ (Yt = yt
∣∣Y t−1
t−D = yt−1

t−D) and P̂ (Xt = xt, Yt = yt
∣∣Xt−1

t−D =

xt−1
t−D, Y

t−1
t−D = yt−1

t−D).
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2. Computation of the marginal probability

P̂
(
Xt = xt

∣∣Xt−1
t−D = xt−1

t−D, Y
t−1
t−D = yt−1

t−D
)
=
∑

yt

P̂
(
Xt = xt, Yt = yt

∣∣Xt−1
t−D = xt−1

t−D, Y
t−1
t−D = yt−1

t−D
)
.

(8)

3. Application of Bayes theorem using (8):

P̂
(
Yt = yt

∣∣Xt
t−D = xtt−D, Y

t−1
t−D = yt−1

t−D
)
=
P
(
Xt = xt, Yt = yt

∣∣Xt−1
t−D = xt−1

t−D, Y
t−1
t−D = yt−1

t−D
)

P̂
(
Xt = xt

∣∣Xt−1
t−D = xt−1

t−D, Y
t−1
t−D = yt−1

t−D
) .

(9)

4. Plug-in of (9) and P̂ (Yt = yt
∣∣Y t−1
t−D = yt−1

t−D) into (7) to obtain Î(XT → Y T ).

4 Data preprocessing

4.1 Preliminary selection of neurons

We selected n = 13 recorded sessions from one monkey and n = 19 recorded sessions from a

second monkey. In Tables S1 and S2 we summarize the selected neurons per area and session

in the discrimination and passive task.

Session/Area S1 S2 MPC DPC M1

1 5 8 13 4 8
2 6 7 12 9 9
3 5 12 13 9 6
4 5 4 11 8 5
5 1 9 15 3 5
6 7 7 10 5 6
7 2 16 2 6 6
8 2 1 16 2 7
9 1 11 11 4 8
10 0 8 13 9 5
11 5 2 13 4 5
12 4 8 7 6 10
13 4 9 10 6 8

TOTAL 47 102 146 75 88 458

Table S1: Number of neurons per area and session from monkey 1.

For each session, we analyzed the following frequency pairs:

{
(f1 = 14, f2 = 22)Hz, (f1 = 30, f2 = 22)Hz

}
.

We chose the pairs according to two criteria. The first criterion was to maintain the distance
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Session/Area S1 S2 DPC M1

1 4 10 0 5
2 5 8 0 9
3 7 10 0 8
4 4 5 0 12
5 8 13 0 12
6 7 10 0 14
7 6 13 0 15
8 5 7 0 10
9 5 5 3 0
10 8 6 7 0
11 5 11 3 0
12 5 7 11 0
13 5 3 4 0
14 5 6 4 0
15 9 5 7 0
16 4 2 5 0
17 9 8 13 0
18 6 6 12 0
19 8 1 7 0

TOTAL 115 136 76 85 412

Table S2: Number of neurons per area and session from monkey 2.

between the frequency pairs constant (|f1−f2| = 8) to neglect effects due to the task difficulty.

The second was to keep f2 fixed so that we were able to identify neural correlates of the decision

after f2 stimulation. We only used correct trials in the discrimination task.

4.2 Considerations about the estimator on spike-train data

As introduced before, the consistency of the estimator requires that any pair of simultaneously

observed time series is a realization of a jointly stationary irreducible aperiodic Markov pro-

cess of some bounded order. However, interactions between simultaneously recorded neural

responses may occur at different delays depending on the area and the task interval. Further-

more, these interactions may be generated by statistically different processes. To tackle these

issues we make the following assumptions:

1. Spike trains can be binarized (i.e., assigning the value 1 to each bin with at least one

spike and the value 0, otherwise) using a bin size of 2ms with limited information loss.

This assumption is discussed is section 4.2.1.

2. Interactions occur at interneuronal delay values within the range [0, 140]ms, which is

chosen based on the reaction times of each area [9]. This range is binned into the

sequence of delays δ = [0 : 5 : 70], i.e., δ = 0(0ms), 5(10ms), 10(20ms), . . . ,70(140ms).
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We assume that interactions span 4ms (D = 2 bins) as it is suggested by a partial

analysis of spike-trains entropies discussed in section 4.2.2.

3. We partition the task timeline into 17 consecutive task intervals of 500ms, where two

intervals match the stimulation periods (Fig. S13). Then, for each task interval and

given delay δ = [0 : 5 : 70] bins, any pair of binarized spike trains (xT−δ, yTδ+1), (T = 250

bins) satisfy the estimator conditions with bounded memory D = 2 bins.

4. The underlying stationary process of each pair (xT−δ, yTδ+1) is invariant across all trials

recorded under the same frequency pair.

 f2 Previous
state pu 

500 ms

2 9 16

f1

1

Delay periods Delay periods t

. . . . . .  

17

Figure S13: Schematic representation of the division of a trial of 8.5s into 17 intervals of 500ms.
The second interval corresponds to the first stimulation, the ninth interval corresponds to the
second stimulation and the sixteenth interval corresponds to the probe-up period.

4.2.1 Binarization of spike-train trials

We evaluated the goodness of our bin choice by counting the number of times that more than

one spike occurred in one bin and it was neglected. The results illustrated in Table S3 (for a

sample of 5 sessions with trials of 8s, n = 5) show that the number of losses was at most 2.7

spikes per trial.

Area S1 S2 MPC DPC M1

Mean 2.7 0.7 0.1 0.02 0.083

Table S3: Average number of spike losses per trial (8s) in a sample of 5 sessions recorded for
the frequency pair (f1 = 14, f2 = 22)Hz.

4.2.2 Memory and delays

As introduced before, the performance of the CTW algorithm depends on the maximum depth

used, D, which can be interpreted as the memory of the Markov process underlying an observed

time series. Indeed, the computational cost of the algorithm grows exponentially with D, and

D therefore becomes a critical parameter to set when the number of required estimations is
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large. To obtain an approximation of neuronal memory we calculated the entropy, H(Y T ),

of all neurons in one session for values of D ranging from 0 to 9 during representative task

intervals. After inspecting how the average entropy in each area under study stabilized as a

function of the spike-train memory, we chose a memory of D = 2 bins(4ms) as a good tradeoff

between our empirical observation and the dimensionality of the parameter space that we

wanted to estimate.

A central question in our study is the time scale at which interactions occur. Results on

interarea delays during decision making are scarce in the literature. Instead, the concept of

task latency, i.e., the average time before an area is modulated by a task, has been used to

approximate the computation of delays during the whole discrimination task [9]. Based on

these results, we set the delays within the range [0, 140]ms.

5 Statistical procedures

Statistical tests were applied in two stages. First, we computed significant values of the

directed information across neuron pairs that were simultaneously recorded to find responsive

paths. Then, we tested the modulation of significant correlations with respect to the monkey’s

decision report to find modulated paths.

5.1 Neuron-pair estimators

We first defined two estimators that were used to correct for multiple testing (one per delay)

in each ordered neuron pair. The two estimators were

Î
(1)
∆ (XT → Y T ) , max

δ=[0:5:70]
Îδ(X → Y) (10)

Î
(2)
∆ (XT → Y T ) ,

∑

δ=[0:5:70]

Îδ(X → Y), (11)

where Îδ is defined according to (7) for any δ > 0:

Îδ(X → Y) ,
1

T

T∑

t=1

I(Yt;X
t−δ|Y t−1) (12)

=
1

T

T∑

t=1

∑

yt

P̂ (Yt = yt
∣∣Xt−δ

t−δ−2 = xt−δt−δ−2, Y
t−1
t−2 = yt−1

t−2)

× log
P̂ (Yt = yt

∣∣Xt−δ
t−δ−2 = xt−δt−δ−2, Y

t−1
t−2 = yt−1

t−2)

P̂ (Yt = yt
∣∣Y t−1
t−2 = yt−1

t−2)
, (13)
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and where X and Y denote the (marginal) stationary processes of XT and Y T . Because of the

consistency of the initial estimator (7), it can be checked that (13) is also consistent provided

that assumptions 1-4 are satisfied.

5.2 Test on the directed information under fixed stimulation

We considered correct (also named “hit”) trials recorded for the frequency pairs (f1 = 14, f2 =

22)Hz and (f1 = 30, f2 = 22)Hz. Based on the assumptions of Section 4.2, we concatenated all

trial segments xT−δ (respectively yTδ+1) that were simultaneously recorded for every delay δ =

[0 : 5 : 70]. This concatenation was performed preserving the trial chronology of each session.

For δ ≥ 0, this resulted in a T ′-length time series, where T ′ = (250 − δ) × number of trials

bins (See Fig. S14).

· · ·XT · · ·0 0 · · ·10 11 · · ·0 01

Trial 1 Trial 2 Trial 3

Figure S14: Trial concatenation (for a given neuron, interval, delay and frequency pair).

To assess the statistical significance of the directed information associated with each neuron

pair and delay we generated surrogate data by permuting 20 times the concatenation of the

second time series Y T without replacement (See Fig. S15). This procedure destroys all

simultaneous dependencies but preserves the statistics of individual concatenated trials. Then,

we started by testing all single-neuron entropies to determine which neurons were able to

express information about other neurons. Based on this preliminary selection, we tested the

(ordered) neuron pairs whose endpoint neuron had a significant entropy. In more detail, for

each delay δ = 0, 5 . . . , 70, we thresholded each original and surrogate data at significance level

α = 0.05 by using a Monte-Carlo permutation test [10], where each value was compared with

the distribution obtained by adding the original and the 20 surrogate estimations. This gave a

number of thresholded delays per neuron pair. Then, for every neuron pair, we independently

tested the estimators (10) and (11) over all original and surrogate values above the threshold.

In particular, for the estimator based on the maximization over delays, Î
(1)
∆ (XT → Y T ),

we used again a Monte-Carlo permutation test [10], where this time the original (i.e., non

permuted) maximum directed information value over thresholded delays was compared with

the tail of a distribution obtained by aggregating maxima surrogate values over corresponding

thresholded delays.

For the estimator based on the sum of the directed information over delays, Î
(2)
∆ (XT →

Y T ), we summed up the directed information across adjacent thresholded delays and used the

maximum cluster value as test statistic [11]. Then, we compared the original maximum cluster

value with the tail of a distribution obtained by aggregating maxima surrogate values over
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Trial 1 Trial 3

Trial 2

Neuron in  

Neuron in  

Trial 2

Trial 3 Trial 1
Î(XT → Ȳ T )

A1

A2

XT

Ȳ T

Figure S15: An example of the permutation procedure between two time series XT , Ȳ T .

corresponding clusterized delays. Significant values of each estimator for either the frequency

pair (f1 = 14, f2 = 22)Hz or (f1 = 30, f2 = 22)Hz defined the responsive paths discussed in

the main text.

In order to perform a specific analysis of interneuronal delays, we chose Î
(1)
∆ (XT → Y T )

(10) as our main estimator. Nonetheless, the results using Î
(2)
∆ (XT → Y T ) (11) were similar

as Fig. S16 illustrates.

5.3 Test on the modulation of the directed information

To asses the modulation of the directed information with respect to the frequency sign D =

f1− f2, we performed a permutation test for every ordered pair whose directed information

had been shown to be significant for either the frequency pair (f1 = 14, f2 = 22)Hz or

(f1 = 30, f2 = 22)Hz with the estimators (10)-(11) respectively. For these pre-selected pairs

we computed directed information estimates using 5 trials of each frequency sign. Then, we

independently computed the difference between the median and the mean directed information

across each set of trials, i.e., (f1 = 14, f2 = 22)Hz and (f1 = 30, f2 = 22)Hz, as test

statistics. For each statistic we compared the original value (i.e., non permuted) with the tails

of a reference distribution obtained by permuting 251
((

10
5

)
− 1
)

times the 10 trials without

replacement. Significant values were obtained at the two-tailed level α = 0.05 and defined the

modulated paths discussed in the main text. The main results of the paper are based on the

difference between the means as test statistic, but no relevant differences were found using the

median.
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Figure S16: Comparison of the percentage of modulated paths over responsive paths across all
intra- and interarea comparisons between the two proposed directed information estimators
in the first monkey. One estimator is based on the maximum directed information over delays
(in green) and the other based on the sum of the directed information over delays (in blue).
The mean difference is used as a modulation test statistic. Arrows in the title indicate the
directionality of the modulated paths. Vertical bars outline the intervals f1, f2 and pu period.
Horizontal dashed lines indicate the significance level (α = 5%). Data were obtained in 13
sessions (n = 13) from areas S1, primary somatosensory cortex; S2, secondary somatosensory
cortex; MPC, medial premotor cortex; DPC, dorsal premotor cortex; M1, primary motor
cortex, and were plotted for 17 consecutive intervals.
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