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We investigated whether it is possible to study the network dynamics and the anatomical

regions involved in the earliest moments of picture naming by using invasive electroen-

cephalogram (EEG) traces to predict naming errors. Four right-handed participants with

focal epilepsy explored with extensive stereotactic implant montages that recorded tem-

poral, parietal and occipital regions -in two patients of both hemispheres-named a total of

228 black and white pictures in three different sessions recorded in different days.

The subjects made errors that involved anomia and semantic dysphasia, which related

to word frequency and not to visual complexity. Using different modalities of spectrum

analysis and classification with a support vector machine (SVM) we could predict errors

with rates that ranged from slightly above chance level to 100%, even in the preconscious

phase, i.e., 100 msec after stimulus presentation. The highest rates were obtained using the

gamma bands of all contact spectra without averaging, which implies a fine modulation of

the neuronal activity at a network level. Despite no subset of nodes could match the whole

set, rates close to the best prediction scores were obtained through the spectra of the

temporal-parietal and temporal-occipital junction along with the temporal pole and hip-

pocampus. When both hemispheres were explored nodes from the left side dominated in

the best subsets. We argue that posterior temporal regions, especially of the dominant side,

are involved very early, even in the preconscious phase (100 msec), in language production.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Information about how the speech production system works

comes from many different sourcesdfrom the study of

aphasic patients to brain imaging techniques (e.g., DeLeon

et al., 2007; Dell, 1990; Fromkin, 1971; Garrett, 1980; Graves,

Grabowski, Mehta, & Gordon, 2007; Hickok & Poeppel, 2007;

Munding, Dubarry, & Alario, 2016; Wilson, Isenberg, &

Hickok, 2009). This information has helped to delineate the

spatiotemporal brain dynamics of how people produce lan-

guage. (e.g., Blackford, Holcomb, Grainger, & Kuperberg, 2012;

Costa, Strijkers, Martin, & Thierry, 2009; Laganaro and Perret,

2011; Strijkers & Costa, 2016). However, we are still far from

having a complete understanding of the brain dynamics

behind this unique human ability.

Here we explore the brain dynamics during speech pro-

duction using invasive EEG (iEEG). Despite the advantages that

this technique offers in terms of temporal and spatial reso-

lution, few studies have made use of it to explore the brain

dynamics involved in speech production (e.g., Cho-Hisamoto,

Kojima, Brown,Matsuzaki,&Asano, 2015; Edwards et al., 2010;

Hamam�e, Alario, Llorens, Li�egeois-Chauvel, & Tr�ebuchon-Da

Fonseca, 2014; Llorens, Tr�ebuchon, Li�egeois-Chauvel, &

Alario, 2011; Martin, Mill�an, Knight, & Pasley, 2016; Tanji,

Suzuki, Delorme, Shamoto, Nakasato, 2005). In particular, we

study the neuroanatomical involvement of parietal, occipital

and temporal structures during speech production by means

of a picture naming task. We assess the iEEG of four patients

implanted because of their intractable epilepsy. We focus on

the brain indexes associated with failures to correctly name

the pictures. That is, we compare the brain activity elicited by

correct versus incorrect naming instances as a proxy for

speech production processes. Hence, we assess when and

where iEEG activity allows classifying correct versus incorrect

responses, an approach so far not described in literature.

It is important to mention that instead of using grid elec-

trodes, we explore patients with stereotactically implanted

electrodes, which allows displaying the electrophysiological

activity in a volumetric fashion. Moreover, Instead of relying

on averaging repetitions like in ERPs studies, we decided to tap

the differences between stereotactic-EEG (SEEG) traces before

and after the stimulus presentation for predicting an event

like in a brain-computer-interface approach.

To advance our results, we are able to distinguish between

correct versus incorrect naming instances just a few milli-

seconds after the picture presentation and more than half a

second before the actual patients' responses. This classifica-

tion was achieved by assessing the activity of the gamma and

beta bands. Furthermore, we were able to track which
Table 1 e Patients are divided in two groups, L1 and L2 with left
epilepsy.

Subject Sex Handedness Electrodes
(right)

Epilepsy onset zone

L1 Female R 11 (4) Left hippocampus and

temporal cortex

L2 Male R 13 Left temporal cortex

R1 Male R 3 (9) Right hippocampus

R2 Male R 0 (15) Right temporal basal cor
anatomical hubs are more sensitive to this classi-

ficationddifferent sections of the temporal lobe at different

times.
2. Patients and methods

This study was approved by The Clinical Research Ethical

Committee of the Municipal Institute of Health Care (CEIC-

IMAS). Patients were informed about the procedure and gave

written consent before the experiment. For this study we

selected four right-handed subjects with drug-resistant focal

epilepsy who presented automotor seizures and an alteration

of the language domain at the neuropsychological examina-

tion that spanned from none to moderate. All patients were

Spaniards and fluent in Spanish. Two of them presented a

right temporal lobe epilepsy (R1 and R2), the other two a left

temporal lobe epilepsy (L1 and L2). In two cases, L2 and R1,

there was an involvement of the mesial structures, while in

the other two the seizure onset zone was located in the tem-

poral posterior and basal regions (see Table 1 for more infor-

mation). Patients were selected because of the extensive

electrode coverage of the parietal, temporal and occipital re-

gions. Two of the four subjects (L1 and R1) were explored in

both hemispheres (see Fig. S1 of Section 9 for more informa-

tion about the electrode position).

All recordings were performed using a standard clinical

EEG system (XLTEK, subsidiary of NatusMedical) with a 500 Hz

sampling rate. A uni- or bilateral implantation was performed

using 12e16 intracerebral electrodes (Dixi M�edical, Besançon,

France; diameter: .8 mm; 5e15 contacts, 2 mm long, 1.5 mm

apart) that were stereotactically inserted (thence the name

stereotactic-EEG or SEEG) using robotic guidance (ROSA,

Medtech Surgical, Inc). In all patients we recorded 126 chan-

nels (maximal amplifier allowance) and discarded the less

informative contacts by visual inspection before the recording

start. The decision to implant, the selection of the electrode

targets and the implantation duration were entirely made on

clinical grounds without reference to this research study.

Only patient R1 was recently intervened and has been

seizure free for 4 months (Engel 1A). Patient L2 is currently

seizure free 16 months after thermocoagulation. Patients L1

and R2 are awaiting surgery.

2.1. Picture naming task

In the picture-naming task participants were asked to name

228 pictures presented in three different blocks in two

different days. Pictures were black and white line drawings of

familiar objects from a wide range of semantic categories
temporal lobe epilepsy, R1 and R2 with right temporal lobe

Reaction time
(average ± SD ms)

Accuracy % Anomia % Semantic %

952 ± 149 69 72 28

888 ± 234 61 83 17

880 ± 140 93 83 17

tex 850 ± 113 94 50 50
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selected from the Snodgrass and Vanderwart (1980) set. Each

picture appeared once centrally and sequentially on the

computer screen in a pseudo-random order for 2000 msec

followed by a fixation cross for 1000 msec. Participants were

instructed to overtly name every item as fast and accurately as

possible in Spanish. The task was presented using a script

written in Processing 2.2.1 running on a laptop computer

(MacBook Pro, Apple inc., CPU: Intel i7 series) located

approximately 60 cm away from the patient. The script was

responsible to orchestrate the picture presentation and a feed-

back to the EEG amplifier in the form of a transistor transistor

logic (TTL) signal produced by a Genuino UNO (Arduino LLC,

open-source hardware distributed under Creative Commons)

microcontroller and reduced to 5 mV by hardware resistors.

The accuracy was scored manually by the experimenter and

later reviewed by two neuropsychologists (MC and JC).
Fig. 1 e EEG processing and error classification. A. To reduce sp

before and after stimulus presentation, here presented as the si

EEG channels, the bottom presenting interictal activity. On the le

on the right we present the spectra relative to splitted window

them altered by a spike, while using the 50 msec windows we

interictal activity. B. To produce the vectors used for training the

binary we averaged all pre-stimulus trials and all post-stimulus

other hand, we produced vectors using 252 dimensions, which

from the pre-stimulus and the post-stimulus epochs. C. Windo

stimulus window versus a 100 msec post-stimulus window tha

explained in panel A, to obtain spectra we used 50 msec window

rectangles. D. Support vector machine (SVM) analysis: we traine

different classes. In the figure we show an example of anomia
2.2. EEG processing, error classification and anatomical
hubs

Two epileptologists (AP and RR) reviewed the EEG traces using

the Natus software to classify interictal activity. No relation

was found between spike and spike-wave discharges and the

trial outcome, therefore we did not exclude any trial from

analysis.

2.2.1. EEG processing
We summarise the EEG processing in Fig. 1. To remove the

alternate current contamination the continuous SEEG data

was notch filtered at 50, 100, 150 and 250 Hz. No special

montage was used and all analyses were performed using the

original extracerebral referenced traces, bandpass filtered at

.5e250 Hz using a butterworth filter. In order to have specific
ectra alteration from spikes we splitted 100 msec windows

lhouette of a cat. To simplify, in the graphic we show only 2

ft we show the spectra relative to 100 msec windows, while

s. Using the 100 msec we would average 4 spectra, 50% of

would average 8 spectra, only 25% of them altered by

classifier and predict errors we used two strategies: in the

trials into a bidimensional vector; in the all-nodes, on the

is twice the number of contacts, since we use all spectra

w steps: at all steps we compared the same basal pre-

t we slided at each step by 100 msec up to 700 msec. As

s, thus we graphically represented the window as splitted

d the classifier using correct and error naming trials as two

using the binary vectors.

https://doi.org/10.1016/j.cortex.2017.08.021
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spectral information we calculated the spectra of all channels

and trials using a sliding, non-overlappingwindow of 50msec.

We used the Welch method (Welch, 1967) to compute the es-

timate of the power spectral density. We chose this window

size in order to minimise interictal activity spectral distortion

as shown in Fig. 1A, where we plot a simplified EEG consti-

tuted by two channels, one of them presenting spikes. By

definition spikes are rapid burst of high frequency activity that

last less than 70msec. Actually, themajority of spikes last less

than 50 msec. In the example, a 100 msec window would be

altered by interictal activity, instead by using 50 msec we

would obtain spectra of normal activity aside of altered

spectra. In the figure we show how it is more likely to average

spectra altered by interictal activity by using 100 msec win-

dows. Technically, the interictal activity minimisation takes

place in the second step, illustrated in Fig. 1B.

2.2.2. Error classification
Machine learning classifiers use vectors (lists of numbers that

represents features) to compute the differences between

classes. To reduce the spectra of all channels to numerical

vectors we considered two different approaches. In the binary

approach we averaged all pre-stimulus and all post-stimulus

spectra of all channels. By averaging we could reduce the

weight of altered spectra (less represented than the unaltered

ones) and also reduce the set to a bidimensional vector (the

simplest possible for classification purposes). In the all-nodes

approach we created vectors containing the series of all

spectra. This approach considers a high dimensionality

feature vector (equal to twice the number of contacts, since

we use all spectra from the pre-stimulus and the post-

stimulus epochs) of which less represented features (in this

case the altered spectra) will be given less statistical power by

the classifier. In Fig. 1C, we show how we computed the

window steps. We considered the following time steps from

stimulus presentation: 100, 200, 300, 400, 500, 600 and

700 msec. We selected these steps after processing the

behavioural statistics that showed an average response rate

higher than 800 msec. At each step we considered two pre-

stimulus windows against two post-stimulus windows, e.g.,

at step 100 we included the following windows: �100 to �50,

�50 to 0, 0 to 50 and 50 to 100msec. For the error predictionwe

used a support vector machine (SVM; Sch€olkopf & Smola, 2002)

implemented in a hybrid C/Python library frequently used in

machine learning problems (Scikit-learn; Pedregosa et al.,

2011). SVMs are especially useful when the supervised clas-

sification involves binary choices and/or trees (Cortes &

Vapnik, 1995). To create the models the classifier was

trained with correct (the patient correctly names the picture)

and naming error trials as two different classes, as shown in

Fig. 1D. We used either the binary or the all-nodes vectors in

distinct experiments. As a final step before training the SVM,

of each spectrum in either binary or all-nodes vector we chose a

band, either beta (15e30 Hz), gamma (30e80 Hz) or ultra-

gamma (80e120 Hz) and averaged their values. Data from

patients was analysed separately and then grouped. Only in

one experiment we built a set containing the data of all trials

recorded from all contacts from the four patients, the all-pa-

tients-all-trials-all-nodes set. For building the models we used

either a linear or radial basis function kernel. Both gave similar
results in this setting, therefore we only present values ob-

tained with the latter.

2.2.3. Anatomical hubs
To determine anatomical hubs we used Monte Carlo testing.

We took 1000 random subsets of 10% of contacts (nodes) of

each patient and run analyses with all-nodes vectors at 100 and

500 msec using the gamma band. No repetition of nodes was

allowed, therefore we calculated that each node would be

represented in the random subsets an average of 10 times and

the chance of analysing the same subset would be infinites-

imal (~1.05$10�27). After acquiring the results we redistributed

the accuracy rates between nodes, i.e., we assigned to each

node the accuracies obtained in every explored subset in

which the node was present, and sorted the nodes from best

to worst average accuracy rates. To divide accuracy groups we

took each sorted distribution and progressively divided them

from the top by comparing equally sized subgroups starting

from 3 items. A group was defined when the null-hypothesis

chance (p value) increased after reaching the smallest value

during the size increase, then the best subgroupwas excluded

and the analysis repeated on the remaining nodes until the

worst subgroup size fell below 3, i.e., when all nodes were

considered and no further divisions were possible.

2.2.4. Spectra reconstruction
After assessing the error prediction accuracies and most

informative anatomical hubs we calculated trial spectra. We

first divided all trials between correct and error trials, then we

averaged the best channels (from accuracy groups) of temporal

pole, second temporal gyrus, temporal basal, hippocampus

head and tail, temporal junction, lateral parietal and occipital

lobe. In this way, for each region we produced two spectra per

patient representing the 200 msec before and the 200 msec

after stimulus presentation. In this way we translated accu-

racy rates as band power activations.

2.3. Image reconstruction and modelling

To identify the anatomical position of the electrode contacts

we used the 3D Slicer software (Pieper, Halle, & Kikinis, 2004).

With the registration tool we coregistered (rigid body, 6� of

freedom) the post-implantation computerised tomography

(CT) scan to the pre-implantation magnetic resonance imag-

ing (MRI). We then added the electrode fiducials on a glass

model of each patient's brain obtained with the segmentation

tool of the Freesurfer bundle (Fischl, 2012). To obtain a single

model we coregistered all studies on the MNI152 template

provided by the Freesurfer bundle using a semi-automated

registration process of 3D Slicer. Briefly, we calculated a

linear transform with 12� of freedom by superposing and

morphing each patient's brain MRI onto the MNI brain tem-

plate, then we used the transform matrix to translate, shift,

skew and resize all other studies (CT scan, and unaltered MRI)

accordingly. Since the 3D Slicer interface shows the MNI co-

ordinateswhen hovering themouse pointer, we could identify

structures touched by electrode contacts both by visual in-

spection and by referring to the aforementioned coordinates.

See Section 9 for information about a double check with the

SPM tool (Eickhoff et al., 2005).

https://doi.org/10.1016/j.cortex.2017.08.021
https://doi.org/10.1016/j.cortex.2017.08.021


Fig. 2 e Prediction rates using the different methods. The binary average uses only two values per trial, while the all-nodes

uses a vector containing the values of all channels and windows (see Section 2.2 for more details). We present separately

overall, LTLE and RTLE results for each method. The all-patient plot represent accuracy rates at all times by mixing all trials

and nodes from the four patients as if they were a single subject (all-patients-all-trials-all-nodes set in the text). To check for

possible learning biases we applied the label swapping method to the latter (label-swap plot). Black dotted lines represent

chance level, while red dotted lines represent full prediction rates (100%). Error bars and line halos represent SEMs. In binary

and all-nodes experiments, they represent the differences between subjects; in all-patient and label-swap they represent the

deviations of 1000 replicas.
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2.4. Statistical analyses, bootstrapping and anatomical
hubs

To understand whether the naming errors were related to

either visual complexity or word frequency we separated all

trials of all subjects into two groups (correct and error trials)

and checked whether there were significant differences in the

distribution of the two aforementioned variables.
For the error prediction models we balanced the sets using

a hybrid all-samples/bootstrapping technique. To ensure that

all error and correct trials were considered in every analysis

we first shuffled the error set (always the smaller in size) and

then added error trials from the original set by random sam-

pling with replacement (Efron, 1992) until the number of error

trials reached the number of correct trials. The balancing

allowed a better training and shortcutted the need to calculate

https://doi.org/10.1016/j.cortex.2017.08.021
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receiver operating characteristic area under the curve (ROC

AUC) rates since they would match the accuracy rates. To

ascertain any bootstrap procedures bias we conducted several

tests with label permutation. By swapping the category labels,

this procedure detects learning procedure effects. When the

latter are present prediction rates fail to drop to chance level.

To cross-validate our results we used the k-fold method

(Dong&Han, 2004). Briefly this technique divides the data into

k different subsets and creates k models with k�1 subsets to

be tested against the remaining subset. For our analyses we

used k ¼ 10.

Mann Whitney U and t-test were performed accordingly to

distributions. To check for Gaussian distribution we used the

ShapiroeWilk normality test.
3. Results

3.1. Naming errors were related to word frequency

The error rate across the four subjects was 21%, unevenly

distributed between left and right temporal lobe epilepsy (35%

vs 7%). Errors were of different type but anomia was the most

prevalent type by far (see Table 1 for more information).

At least two locimay be identified as the origin of the errors

while naming a picture: from visual processing or from more

language-dependent sources. We looked at the effect of visual

complexity as a proxy of visual demand in naming, but we did

not find any differences in the distribution of this parameter

between errors and correct responses. However, when we

used word frequency, as a variable more related to language

processing, we found that errors were more associated to low

frequency words than correct responses (22.3 ± 1.13 vs

15.9 ± 1.82 average word frequency ± SEM, p ¼ .0003).

3.2. The modulation of gamma and beta bands at a
network level allows error prediction

In this phase we used both the binary and the all-nodes vectors.

Both analyses considered all channels of the SEEG but with

different strategies. The binary trained the classifier with

averaged bidimensional vectors, of which one dimension

corresponded to the 100 msec previous to the stimulus and

100 msec in the post-stimulus epoch respectively, while the

all-nodes trained the classifier to recognise amultidimensional

feature space containing all pre-stimulus and all post-

stimulus spectra.

The first interesting result concerns themarked differences

between left and right temporal lobe epilepsy (L and RTLE)

patients. In LTLE the prediction was far worse and did not

significantly overcome chance level (50% for a binary distri-

bution). Although not totally unexpected, it is remarkable that

theworse rates in LTLEwere found to be the earliest ones using

the binary vectors. All considered bands showed two peaks of

processing activity, one in the earliest 100 msec (200 msec for

LTLE subjects) and the second around 400e600 msec. There-

fore we furthered our analysis by using the all-nodes approach

at 100 and 500 msec. Training the classifier with data from all

contacts dramatically increased the classification power,

which reached 100% in RTLE patients, at 100 msec in the
gamma band (Fig. 2), while LTLE patients error prediction rates

rose above 70%, at least in the gamma and beta bands. Inter-

estingly, in these patients the beta band wasmore informative

than the gamma band. The latter though retained a certain

specificity for the 100 msec step.

Finally, to understand whether this effect could be gener-

alised across patients, we made an all-patients-all-trials-all-

nodes set that we analysed at beta, gamma and ultra-gamma

bands. In other words, we collected all trials from all pa-

tients and analysed them as if they were recorded from a

single subject. Surprisingly, the rates dropped only to around

75% and again the peaks were distinguishable at 100 and

400e600 msec. To check whether these results were not

depending on the method, especially the bootstrapping pro-

cedure, we analysed the all-patients-all-trials-all-nodes set using

label swapping, which made rates drop to chance level. We

repeated this procedure 1000 times and no permutation

overcame benchmark rates at any time step (p < .001).

3.3. Whole network effect and anatomical hubs

In this contextweuseerror predictionasa synonymof labelling

accuracy. Formally the algorithm is trained to recognise pat-

terns that precede a naming error, therefore a correct labelling

corresponds to a prediction. No subset of contacts could pro-

duce error prediction rates matching the rates obtained

through the original set using the all-nodes analysis. Despite

that, certain combinations allowed accuracies that almost

reached the best results. In other words, accuracy groups list

contacts in order of error prediction power. To summarise this

contribution we depicted all nodes taking part in the first ac-

curacy group of each patient into a glass model that shows

snapshots of the brain activity at 100 and 500 msec after stim-

ulus presentation (see Fig. 3, circles represent the activation at

100msec, squares at 500msec). Interestingly, in theearly phase

of naming both posterior (occipital and parietal), junctional

(angular gyrus and temporal-occipital junction) and anterior

structures (temporal pole, temporal basal and hippocampi)

together present the best prediction power. Several hundreds

of milliseconds after (at 500 msec) the fulcrum shifts towards

anterior structures, especially the temporal and temporal basal

gyra, although prediction power of the junctional structures

remains maximal. When both hemispheres were explored,

structures of the dominant side were more likely among the

most important prediction hubs. When only the right hemi-

sphere was explored (subject R2) the number of nodes distrib-

uted among the first two accuracy groups was increased

(16.0 ± 10.0 vs 5.5 ± 4.4 contacts, median ± SD, p < .05).

3.4. Complex beta and gamma modulation

To understandwhich kind ofmodulation allowed us to predict

the trial outcome with good confidence rates, we tracked the

anatomical structures most likely responsible for the predic-

tion at 100 and 500 msec by ordering the most informative

contacts. Structures from the right or left hemisphere could be

selected depending on the electrode coverage and prediction

scores in the accuracy groups. Fig. 4 shows spectra before and

after stimuli, each line represent a subject, the first column

displays the averages of all correct trials, while the second the

https://doi.org/10.1016/j.cortex.2017.08.021
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Fig. 3 e Brain regions by prediction accuracy, somenodes (hubs) presentedhigher accuracy rates than the rest (see Section 2.2

formore information). Panel A shows the left hemisphere contribution to error prediction,while panel B the right hemisphere

contribution. Panel C shows two snapshots of the whole glassmodel, top yawed and down-pitched towards the left. The top

model onlydepicts the 100msec accuracygroups,while the bottommodel represents both 100 and500msec accuracygroups.
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averages of all wrong trials. For subjects L1 and L2 only left

sided structures were chosen because only left sided struc-

tures listed in the first accuracy group. For subject R2, the

temporal areas of the dominant side were selected. In this

patient the junctional and posterior areas were mapped only

on the right hemisphere. All subjects showed a gamma and/or

beta band modulation of anterior temporal, hippocampal tail

and parietal-occipital regions before naming correctly a pic-

ture. RTLE patients, especially R2, showed the highest amount

of positive modulation in the temporal junction and parietal

regions. The modulation somehow reverses before an error,

especially in LTLE patients. RTLE subjects still show a positive

modulation that somehow mimics the one that occurs in

correct trials, but to a lesser extent. Since RTLE implants did

not (R2) or only partially covered the left temporal junction

and parietal lobe, the spectra of these subjects show the

activation of posterior right structures. These results suggest

that posterior structures from the dominant or non-dominant

hemisphere participate differently in picture naming.
4. Discussion

In the study we investigated whether it is possible to assess

the network dynamics and the anatomical regions involved in
the earliest moments of picture naming by using SEEG. The

results suggest that brain activation in occipital, parietal and

temporal areas can be used to predict the success of word

retrieval.

As expected, beta and gamma activity increased in these

brain areas when subjects successfully named a picture as

compared to when they made an error. Furthermore, this

prediction can already be made recording the activation a few

milliseconds after the naming process has started and much

earlier than the response is given e just as soon as 100 msec

after the picture is shown. These observations were obtained

by analysing the spectra of SEEG traces before and after the

picture presentation for trials than led to correct and incorrect

responses. We trained a classifier to tease apart both sets of

trials using a portion of the bands averaged from the spectra.

We assessed the classifier accuracy by looking at how well it

classifies trials that were not used for the training.

The fact that the prediction can be made by looking at the

state of the network very early on suggests that conscious

access to the picture semantic representation has not been yet

achieved. This interpretation is based on studies using iEEG

and MEG that have shown that the neurophysiological corre-

lates of conscious perception of very simple visual cues differ

from the unconscious perception at least 100 msec after the

stimulus presentation and are followed by an increase of theta

https://doi.org/10.1016/j.cortex.2017.08.021
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activity in the ventral striatum at 200 msec (Salti et al., 2015;

Slagter et al., 2017). Therefore more complex visual stimuli

should be consciously perceived at least at the same latency, if

not later.

We also observe that the highest predictive power of the

classifier is found when using the entire set of contacts. This

supports the notion that picture naming is sustained by a

distributed brain network that is rapidly activated in the

course of language production (Chao, Haxby, & Martin, 1999;

Wilson et al., 2009). Notwithstanding the existence of this

distributed network, we also observed some major hubs

participating in the naming process. Indeed, when the clas-

sifier was trained with certain contact combinations per-

formed almost as well as the classifier trained with the whole

set. This reveals that there are hubs processing the most

important information for distinguishing between correct and

incorrect responses.

One of the most interesting results was that using random

distributions we could demonstrate a spatial shift of predic-

tion power, from more posterior towards anterior regions of

the temporal lobe, through time. The late (500 msec) distri-

butions involved predominantly the pole, lateral and basal

areas of the dominant temporal lobe, as expected (Chao et al.,

1999). Aswe know, language production is sustained by a large

distributed brain network, but the exact time-course is not
completely known (for a review see Indefrey & Levelt, 2004).

Here, we tried to couple these two information and we found

that different brain areas are involved in time-course from 100

to 500 msec, and their activation is predictive of the subjects'
response. This is relevant within the literature of SEEG and

language because it adds new evidence of the early processing

of language, beyond what we already know from previous

studies (e.g., Edwards et al., 2010; for a review see Llorens

et al., 2011).

Two more interesting findings are related to the differen-

tial contribution of hemispheres during picture naming and

the consistency in the predictive power of the classifier.

Indeed, the number of contacts needed to distinguish er-

rors from correct naming instances was higher for the right

hemisphere as compared to the left one. This reveals that

more nodes of the non-dominant hemisphere are needed to

achieve the same results in error prediction.

About the consistency across time and across subjects, the

predictability of errors did not decrease when we considered

all trials (performed in different days) and all patients together

(all-patients-all-trials-all-node vectors). This reveals a clearcut

difference between the activation of cortical areas when

naming is successful versus a failure of the process to retrieve

the information. This suggests that brain dynamics behind

the processing of naming can be compared between subjects

https://doi.org/10.1016/j.cortex.2017.08.021
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using machine learning methods, despite the differences in

electrode placement, their physiological and pathophysio-

logical background.

However, there is also an important caveat tomention. The

source of the differences between correct and incorrect trials

comes mostly from anomias for low frequent words, a con-

dition known to be more demanding for lexical retrieval

because of the involvement of control processes (for error-

related brain areas and cognitive processes see Corina et al.,

2010). Since we were not able to measure the contribution of

such non-linguistic components with a control task, we need

to acknowledge that our findings cannot be interpreted

exclusively in terms of linguistic processes.

The approach of analysis used in our study was to inves-

tigate how early network dynamics can predict the success of

word retrieval. Therefore, as first attemptwe concentrated the

analysis on more frequent errors we found in our patients,

that is anomias (from 50% to 83%), and not considering se-

mantic paraphasias because theywere only 20% inmost of the

patients. Further research will focus on prediction of network

dynamics by comparing different types of errors in order to

disentangle the contribution of other linguistic components,

such as semantics, phonology and motor planning of speech.

Another important aspect to investigate further concerns

the differences between RTLE and LTLE patients. Despite error

rates in LTLE were expected, further studies with more sub-

jects and more trials should determine whether the error

prediction differences between RTLE and LTLE subjects relate

to the increased error rates of the LTLE group, or represent the

hallmarkofphysiopathologicalmechanisms.Moreover, future

studies are needed to determinewhether this kind of analyses

might help defining eloquent areas, which is of paramount

importance for epilepsy surgery. Unfortunately we cannot

answer this question with this small set of LTLE subjects, who

in addition have not been operated for different reasons.

From the technical point of view, our study also contrib-

utes to the general research of iEEG, by showing the useful-

ness of analysing SEEG traces without electrical stimulation in

the context of language processing. This has allowed us to

define in a more fine-grained manner the time course, since

previous studies using iEEG did not usually consider activa-

tions before 150 msec after stimuli (Cho-Hisamoto et al., 2015;

Tanji et al., 2005). To show the usefulness of SEEG trace

analysis is important because this technique provides a very

large number of recording points distributed in a more volu-

metric way, which therefore can be used to better describe the

cortical networks involved in cognitive processes.
5. Conclusions

This study shows how SEEG analysis and machine learning

methods can be combined in a successful way to understand

the dynamics of brain networks behind cognitive processes.

This combination allowed us to highlight a complex modu-

lation of the brain electrical activity that takes place prefer-

entially in temporal and parietal structures of the dominant

side. This processing occurs very early in picture naming, in a

pre-conscious phase, and consolidates in a second peak,

possibly related to conscious perception. Further studies using
this kind of error analysis might pave the way for the devel-

opment of tools useful in the clinical setting.
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