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Abstract—We analyze multiuser detection under the assumption
that the number of users accessing the channel is unknown by the
receiver. In this environment, users’ activity must be estimated
along with any other parameters such as data, power, and loca-
tion. Our main goal is to determine the performance loss caused by
the need for estimating the identities of active users, which are not
known a priori. To prevent a loss of optimality, we assume that iden-
tities and data are estimated jointly, rather than in two separate
steps. We examine the performance of multiuser detectors when
the number of potential users is large. Statistical-physics method-
ologies are used to determine the macroscopic performance of the
detector in terms of its multiuser efficiency. Special attention is
paid to the fixed-point equation whose solution yields the multiuser
efficiency of the optimal (maximum a posteriori) detector in the
large signal-to-noise ratio regime. Our analysis yields closed-form
approximate bounds to the minimum mean-squared error in this
regime. These illustrate the set of solutions of the fixed-point equa-
tion, and their relationship with the maximum system load. Next,
we study the maximum load that the detector can support for a
given quality of service specified by error probability.

Index Terms—Asymptotic analysis, multiuser detection, mul-
tiuser efficiency, statistical physics.

I. INTRODUCTION

N multiple-access communication, the evolution of user ac-
I tivity may play an important role. From one time instant to
the next, some new users may become active and some users in-
active, while the parameters of the active users, such as power or
location, may vary. Now, most of the available multiuser detec-
tion (MUD) theory is based on the assumption that the number
of active users is constant, known at the receiver, and equal to the
maximum number of users entitled to access the system [1]. If
this assumption does not hold, the receiver may exhibit a serious
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performance loss [2], [6]. In [7], the more realistic scenario in
which the number of active users is unknown a priori, and varies
with time with known statistics, is the basis of a new approach
to detector design. This work presents a large-system analysis
of this new type of detectors for code division multiple access
(CDMA).

Our main goal is to determine the performance loss caused
by the need for estimating the identities of active users, which
are not known a priori. In this paper we restrict our analysis
to a worst-case scenario, where detection cannot improve the
performance from past experience due to a degeneration of the
activity model (for instance, assuming a Markovian evolution
of the number of active users [3], [4]) into an independent
process [5]. The same analysis applies to systems where the
input symbols accounting for data and activity are interleaved
before detection. To prevent a loss of optimality, we assume
that identities and data are estimated jointly, rather than in
two separate steps. Our interest is in randomly spread CDMA
system in terms of multiuser efficiency, whose natural di-
mensions (number of users K, and spreading gain N) tend
to infinity, while their ratio (the “system load”) is kept fixed.
In particular, we consider the optimal maximum a posteriori
(MAP) multiuser detector, and use tools recently adopted from
statistical physics [8], [9], [11]-[13], [29]. Of special relevance
in our analysis is the decoupling principle introduced in [9]
for randomly spread CDMA. The general results derived from
asymptotic analysis are validated by simulations run for a
limited number of users [12].

The results of this paper focus on the degradation of mul-
tiuser efficiency when the uncertainty on the activity of the users
grows and the SNR is sufficiently large. We go one step beyond
the application of the large-system decoupling principle [8], [9]
and provide a new high-SNR analysis on the set of fixed-point
solutions showing explicitly its interplay with the system load
for a nonuniform ternary and parameter-dependent input distri-
bution. By expanding the minimum mean square error for large
SNR, we obtain tight closed-form bounds that describe the large
CDMA system as a function of the SNR, the activity factor and
the system load. In addition, some tradeoff results between these
quantities are derived. Of special novelty here is the study of the
impact of the activity factor in the CDMA performance mea-
sures (minimum mean-square error, and multiuser efficiency).
In particular, we provide necessary and sufficient conditions on
the existence of single or multiple fixed-point solutions as a
function of the system load and SNR. Finally, we analytically
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identify the region of “meaningful” multiuser efficiency solu-
tions with their associated maximum system loads, and derive
consequences for engineering problems of practical interest.

This paper is organized as follows. Section II introduces
the system model and the main notations used throughout.
Section III derives the large-system central fixed-point equa-
tion, and analytical bounds to the MMSE. Based on these
results, Section IV discusses the interplay of maximum system
load and multiuser efficiency. Finally, Section V draws some
concluding remarks.

II. SYSTEM MODEL

We consider a CDMA system with an unknown number of
users [7], and examine the optimum user-and-data detector.
In particular, we study randomly spread direct-sequence (DS)
CDMA with a maximum of K active users

Yy, = SAb; + z, (D

where g, € RY is the received signal at time ¢, V is the length
of the spreading sequences, S € RV *X is the matrix of the se-
quences, A = diag(ay,...,ax) € REXK is the diagonal ma-
trix of the users’ signal amplitudes, b; = (b}, ...,bX) € R is
the users’ data vector, and z; is an additive white Gaussian noise
vector with i.i.d. entries ~ A/(0, 1). We define the system’s ac-
tivity rate as « = Pr{user k is active}, 1 < k < K. Ac-
tive users employ binary phase-shift keying (BPSK) with equal
probabilities. This scheme is equivalent to one where each user
transmits a ternary constellation X = {—1,0, 41} with prob-
abilities Pr{b} = —1} = Pr{bj = +1} = § and Pr{b} =
0} = 1 — a. We define the maximum system load as 3 £ %

In a static channel model, the detector operation remains in-
variant along a data frame, indexed by ¢, but we often omit this
time index for the sake of simplicity. Assuming that the receiver
knows S and A, the a posteriori probability (APP) of the trans-
mitted data has the form

p(b | Y, SvA) = Leim &
Vor p(y|S;A)

Hence, the MAP joint activity-and-data multiuser detector
solves

@)

b= bly,S,A). 3

arg wax p(bly, S, 4) ©)
Similarly, optimum detection of single-user data and activity is
obtained by marginalizing over the undesired users as follows:

b = bly,S,A). 4
arglr;)%xl%p( 'y, S, A) ©)

A. The Decoupling Principle

In a communication scheme such as the one modeled by (2),
the goal of the multiuser detector is to infer the information-
bearing symbols given the received signal y and the knowledge
about the channel state. This leads naturally to the choice of the
partition function Z(y,S) = p(y|S). The corresponding free
energy, normalized by the number of users becomes [8]

A 1
Fi & -2 lup(y|S). (5)
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To calculate this expression we make the self-averaging assump-
tion, which states that the randomness of (5) vanishes as K —
oo. This is tantamount to saying that the free energy per user
Fk converges in probability to its expected value over the dis-
tribution of the random variables y and S, denoted by

F£ lim [E{—%lnp(yhg)}. (6)

K—oo
Evaluation of (6) is made possible by the replica method [11],
[13], which consists of introducing n independent replicas of
the input variables, with corresponding density p"(y|S), and
computing F as follows:

n—0 a’n,

.0 ) 1
F =—lim — (Kh_{nw?hl [E{p"(y|S)}> . @)

To compute (7), one of the cornerstones in large deviation
theorem, the Varadhan’s theorem [21], is invoked to transform
the calculation of the limiting free energy into a simplified opti-
mization problem, whose solutions are assumed to exhibit sym-
metry among its replicas. More specifically, in the case of a
MAP individually optimum detector, the optimization yields a
fixed-point equation, whose unknown variable corresponds to
the multiuser efficiency of an equivalent Gaussian channel [9].
The multiuser efficiency reflects the degradation factor of SNR
due to interference [1]. Due to the structure of the optimiza-
tion problem, the multiuser efficiency must minimize the free
energy. The above is tantamount to formulating the decoupling
principle.

Claim 2.1: [9], [12] Given a multiuser channel, the distribu-
tion of the output b* of the individually optimum (IO) detector,
conditioned on b* = b being transmitted with amplitude a, con-
verges to the distribution of the posterior mean estimate of the
single-user Gaussian channel

1
y =+ —z,
VY NG

where z ~ A/(0, 1), and 7, the multiuser efficiency, is the solu-
tion of the following fixed-point equation:

®)

n 1 =1+ BE,[YMMSE(7y, a)]. ©)

If (9) admits more than one solution, we must choose the one
that minimizes the free energy function

7= | [ oo 109 pty 1)1

11 2me n 1
—=1In
2 n 20

2

( In —”> . (10)
n

In (9), (10), p(y | b*) is the transition probability of the large-

system equivalent single-user Gaussian channel described by
(8), and

MMSE(7y, ) 2 E [(b’“ - B’“)Q] (11)
denotes the minimum mean-square error in estimating b*
in Gaussian noise with amplitude equal to /v, where
b¥* = E[b*|y] is the posterior mean estimate, which is
known to minimize the MMSE [22].
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B. A Note on the Validity of the Replica Method

The replica method is known to accurately approximate ex-
perimental data and is consistent with previous theoretical work
[19], [23], [24]. The replica method analysis relies on four un-
proved assumptions: i) the self-averaging property of the free
energy; ii) the replica symmetry of the fixed-point solutions; iii)
the exchange of order of limits; and iv) the analytic continuation
of the replica exponent to real values. Although the validation of
the mathematical rigor of these assumptions is still an unsolved
problem, there has been some recent progress in this direction
[14], [25]-{28]

III. LARGE-SYSTEM MULTIUSER EFFICIENCY

We illustrate here the behavior of multiuser efficiency and
system load in the high-SNR region corresponding to detec-
tion with an unknown number of users. We start by shaping our
problem into the statistical-physics framework [8], [9]. As men-
tioned earlier, the multiuser detector metric is regarded as the
energy of a system of particles at state X . Therefore, the parti-
tion function Z(X) = " exp(—e(x)/T) corresponds to the
output density given the channel information, i.e., p(y|S) =
(2m)=1/2 Y p(b) exp(ly — SAB|?/2).

The energy operator £( - ), as derived from the free energy, is
related to the logarithm of the joint distribution p(y | b, S)p(b)

e(b) = |ly — SAb||* — 2Inp(b). (12)

We can now invoke the decoupling principle (Claim 2.1) in
the multiuser system (1), so as to use its single-user characteriza-
tion. By doing this, the system’s performance can be character-
ized by that of a bank of K scalar Gaussian channels (8), where
K represents the maximum number of users. The input distribu-
tion for an arbitrary BPSK user k takes values X = {—1,0,+1}
with probabilities 3,1 — « and 3, respectively. The signal am-
plitudes from matrix A are assumed to be constant, i.e., ap =
Val Vk, where ~y is the SNR per active user (referred to as SNR),
and the inverse noise variance is equal to the multiuser efficiency
7. Hence, 7 is the solution of the fixed-point (9) that minimizes
(10), where the MMSE is given by (11). More generally, the
analysis presented in this paper can be easily extended to ay
coefficients with different statistics, like for example those in-
duced by Rayleigh fading.

By applying [9, Claim 2.1], which holds under the assump-
tions of the replica method, the fixed-point equation of the user-
and-data detector can be stated as follows.

Corollary 3.1: Given a randomly spread DS-CDMA system
with constantequal power per user, the large-system multiuser ef-
ficiency of an individually optimum detector that performs MAP
estimation of users’ identities and their data under BPSK trans-
mission is the solution of the following fixed-point equation:

’r]:

1 — 1 *52 a? sinh(ny—y/n7) _ d
+ 4 <’Y |:O‘ f Nors a cosh(ny—y/m7)+(1—a)e Y
(13)

that minimizes the free energy (10).
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Fig. 1. Large-system multiuser efficiency of the user-and-data detector under
MAP with prior knowledge of « and 5 = 3/7.

Proof: See Appendix 1. |

Our approach differs from that in [8], [9], and [20], as the
fixed-point equation (13) also includes the prior distribution on
the users’ activity in a static channel. Under MAP estimation,
detection requires the knowledge not only of the prior informa-
tion of the data, but also of the activity rate . Thus, the solutions
to the fixed-point equation depend on the MMSE, SNR, and
system load. Numerical solutions versus SNR ataload 3 = 3/7
are shown in Fig. 1. Plots like this one illustrate how the mul-
tiuser efficiency is affected by the level of noise and interfer-
ence, and by the uncertainty in the users’ activity rate. For low
SNR, noise dominates, and the performance of the MMSE and
the multiuser efficiency is degraded as o grows, since the pres-
ence of more active users adds more noise to the system. On the
other hand, as we shall discuss later, for high SNR the MMSE
strongly depends on the minimum distance between the trans-
mitted symbols, and the activity rate here plays a secondary role.
Hence, the gap between the multiuser efficiencies with a = 1
and « # 1 for larger SNR is due to the fact that the former con-
stellation has twice the minimum distance of the latter. We can
observe clearly the transition behavior from low to high SNR
for values of a approaching 1. Moreover, when a = 1, (13) re-
duces to the fixed-point equation for the classical assumption, in
which all users are active and transmit a binary antipodal con-
stellation [9]

=14 (7 [1—. / \/12—7re_y2/ 2tanh(nv—y\/ﬁ)dyD . (14)

In this case, it can be shown that, for high SNR, we have
MMSE(ny,a = 1) = f]—’;e_"V/?. In fact, the following
general result holds.

Lemma 3.2: [30] For large output SNR, the MMSE of a
system transmitting an equiprobable M -ary normalized con-
stellation with minimum Euclidean distance d in a Gaussian
channel with noise variance 1/7 is

MMSE(ny,a=1) = m(nv)eidznwg (15)
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Fig.2. A comparison of the exact MMSE value with its upper and lower bounds
for @ = 0.5 and ny € [10, 20] dB.

with k1(ny) < k(ny) < k2, where k1(ny) = O(1//n7)
and ko is a constant, given by the maximum distance between
neighboring symbols.

For the entire range of activity rates, i.e., « € [0, 1], we can
derive lower and upper bounds illustrating analytically the tran-
sition between the classical assumption (o = 1) and the cases
where the activity is also detected (o < 1) for large SNR. Our
calculations bring about a new analytical framework to deal with
large-system analysis, as we will see in the next section. Our
bounds are consistent with Lemma 3.2 and the lower bound in-
cludes the case o = 1. The general result is stated as follows.

Theorem 3.3: The MMSE of joint user identification and data
detection in a large system with an unknown number of users
has the following behavior, valid for sufficiently large values of
the product 7~y

MMSE(y, o) > 2 Me—m/g
Yy
ra(l — )

MMSE(ny, a) < 20e M2 4 e M/8.(16)

Proof: See Appendix II. [ |

Bounds in (16) describe explicitly, in the high-SNR region,
the relationship between the MMSE, the users’ activity rate, and
the effective SNR (7y). In Fig. 2 these bounds are compared to
the true MMSE values as a function of ny for fixed «. It can be
seen that the uncertainty about the users’ activity modifies sub-
stantially the exponential decay of the MMSE for high SNR. In
fact, a value of « different from 1 causes the MMSE to decay
by exp(—1nry/8), rather than by exp(—nvy/2), which would be
the case when all users are active. Furthermore, we can observe
that, for sufficiently large effective SNR, the behavior versus «
of the optimal detector is symmetric with respect to « = 1/2,
which corresponds to the maximum uncertainty of the activity
rate. Fig. 3 shows that for large values of the product 7, the
MMSE essentially depends on the minimum distance between
the inactivity symbol {0} and the data symbols {—1,1}, and
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Fig.3. A comparison of the exact MMSE value with its upper and lower bounds
for ny = 20 dB and @ € [0, 1].

thus users’ identification prevails over data detection. Summa-
rizing, the dependence of the MMSE must be symmetrical with
respect to @« = 1/2, since it reflects the impact of prior knowl-
edge about the user’s activity into the estimation.

IV. MAXIMUM SYSTEM LOAD AND RELATED CONSIDERATIONS

Recall the definition of maximum system load § = %, where
K is the maximum number of users accessing the multiuser
channel. When the number of active users is unknown, and there
is a priori knowledge of the activity rate, the actual system load
is ' = af. In this section, we focus on [ and study some of
its properties. Notice that, given an activity rate, results for the
actual system load follow trivially.

A. Solutions to the Large-System Fixed-Point Equation

We characterize the behavior of the maximum system load
subject to quality-of-service constraints. This helps to shed light
into the nature of the solutions of the fixed-point equation (13).
In particular, there might be cases where (13) has multiple so-
lutions. These solutions correspond to the solutions appearing
in any simple mathematical model of magnetism based on the
evaluation of the free energy with the fixed-point method [11].
They represent what in the statistical physics parlance is called
phase coexistence (for example, this occurs in ice or liquid phase
of water at 0°C). In particular, at low temperatures, the mag-
netic system might have three different solutions 0 < ¥; <
Uy < U3 < 1. Solutions ¥; and W3 are stable: one of them is
globally stable (it actually minimizes the free energy), whereas
the other is metastable, and a local minimum. Solution U5 is
always unstable, since it is a local maximum. The “true” so-
lution is therefore given by W; and W3, for which the free en-
ergy is globally minimized. The same consideration applies also
to our multiuser detection problem where multiuser efficiencies
for the 10 detector might vary significantly depending on the
value of the system load and SNR. More specifically, for suf-
ficiently large SNR, stable solutions may switch between a re-
gion that approaches the single-user performance (n =1 — ¢;)
and a region approaching the worst performance (n = ¢p), for
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Fig. 4. Fixed-point solutions (marked by circles) for different values of 3 and
fixed « = 0.5,and v = 18 dB.

0 < €1,€0 < 1. Following previous literature [8], we shall call
the former solutions good and the latter bad. When the solution
is unique, due to low or high system load, the multiuser effi-
ciency is a globally stable solution that lies in either the good or
the bad solution region. Then, for given system parameters, the
set of operational (or globally stable) solutions is formed by so-
lutions that are part of these sets and minimize the free energy.

The existence of good and bad solutions are critical in our
problem. From a computational perspective, we are particularly
interested in single solutions, either bad or good, that surely
avoid metastability and instability. These solutions belong to a
specific subregion within the bad and good regions, and appear
for low and high SNR, respectively.

From an information-theoretic perspective, it might seem that
the true solutions should capture all our attention. However, it
has been shown that metastable solutions appear in suboptimal
belief-propagation-based multiuser detectors, where the system
is easily attracted into the bad solutions region (corresponding
to low multiuser efficiency), due to initial configurations that
are far from the true solution [12]. Moreover, the region of good
solutions is of interest in the high-SNR analysis, because, for
a given system load, it can be observed that the multiuser ef-
ficiency tends to 1, consistently with previous theoretical re-
sults [23].

Of special interest is the case of single good solutions for
which the results arising from the replica method can be rigor-
ously validated [26], [27]. In what follows, we provide an anal-
ysis of the boundaries of the stable solution regions, as well as
their single-solution subregions with practical interest in the low
and high SNR regimes.

A quantitative illustration of the above considerations is pro-
vided by plotting the left- and right-hand side (RHS) of (13) to
obtain fixed points for constant values of amplitude and activity
rate, and as a function of the system load. The solutions of (13)
are found at the intersection of the curve corresponding to the
RHS with the y = 7 line. Fig. 4 plots different solutions of the
RHS of (13) for increasing system load, o = 0.5 andy = 18 dB

1
1 + BYMMSE(ny, a).

W(vy,n,a)=
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Notice first that the structure of the fixed-point equation in gen-
eral does not allow the solution = 0, and for finite v and
B, n = 1 is not a solution. In fact, the latter is an asymptotic
solution for large SNR and certain system loads, as the MMSE
decays exponentially to 0. From Fig. 4, one can observe the pres-
ence of phase transitions and the coexistence of multiple solu-
tions. In particular, we observe that for 3 = 3/7 the good solu-
tion is computationally feasible. On the other hand, for § = 1
and B = 10 the system has three solutions, where the true solu-
tion belongs to either the bad or the good solution region. When
the system load achieves 5 = 30, the curve only intersects the
identity curve near 0, and the operational solution is unique and
lies in a subregion of bad solutions.

B. System Load and the Space of Fixed-Point Solutions

Even in the case of good solutions, the multiuser efficiency
can be greatly degraded by the joint effect of the activity rate and
the maximum system load. In order to analyze the fixed-point
equation (13) from a different perspective and shed light into the
interplay between these parameters, we express the maximum
system load as the following function, derived from (13)

A (1-n)

SV (17)
nyYMMSE(ny, a)

Ya(v,m,cx)
Since MMSE is a continuous function of 7 [10], then Y g is
also a continuous function in any compact set over the domain
n € (0,1] for given SNR and activity rate. It is also easy to
observe that, for small values of 1, T4 tends to infinity regard-
less of v and «, whereas in the high-n region, which is of in-
terest here, it decays to 0. Before analyzing the behavior of (17),
we introduce a few definitions that help describe the boundaries
between the regions with and without coexistence (in the sta-
tistical-physics literature, these boundaries are called spinodal
lines [8]). We also define appropriately the regions of potentially
stable solutions as introduced before.

Definition 4.1: The critical system load 3* (7, «) is the max-
imum load at which a stable good solution of (13) exists.

Definition 4.2: The transition system load f(7, ) is the
minimum load at which the true solution of (13), 7, coexists
with other solutions 7.

Definition 4.3: The good solution region corresponds to the
domain of (17) formed by the maximum 7 in every set of pre-
images of Y 3 below the critical system load

Ry= {n e0,1,9 = maX{Tgl(ﬁ)} Vg € [0,/3*]} (18)

Similarly, the bad solution region corresponds to the domain of
(17) formed by the minimum 7 in every set of pre-images of T3
above the transition system load

Ry={n € [0,1],n=min {3 (9)} V6 € [B,, +00)} . (19)

Definition 4.4: The single good solution region Ry. C Ry
corresponds to the domain of (17) formed by the pre-image of
Y 5 below the transition system load:

Rye={ne0,1L,n=";2B) Ve 0,6} @0



TAUSTE CAMPO et al.: LARGE-SYSTEM ANALY SIS OF MULTIUSER DETECTION

25

*

207"

B>

O 1 1
0 Ry 0.2 0.4 0.6 0.8 R 1Rge
n g

Fig. 5. System load function in the multiuser efficiency domain for o = 0.5
and v = 18 dB.

and the single bad solution region Ry. C Ry corresponds to
the domain of (17) formed by the pre-image of Y 5 above the
critical system load

Rie = {ne0,1n="5(6). Y0 € [*, +00)} . @)

Fig. 5 illustrates Tg (for fixed SNR and activity rate) and
show the regions defined by the aforementioned parameters. It
is important to remark that both system loads defined above de-
limit the regions from which there is phase coexistence (3, <
[ < [3*) from the areas where there is one solution (8 > * or
08 < By). Additionally, Fig. 5 illustrates the set of solutions that
satisfy (20).

Fig. 5 illustrates that it seems useful to define analytically
the domain where stable solutions can be found. Beforehand,
we differentiate for convenience the case with unknown number
of users & € (0,1), from the case where all users are active
(a = 1). We do not consider the case o = 0.

1) Case o € (0,1): In order to analyze the conditions on
the system load, SNR, and activity rate, for which we can find a
good solution, we use the asymptotic results on the MMSE (16),
yielding lower and upper bounds L(-) < Yga(v,n,a) < U(-)
for large enough 7y, where

(1—n)
mya(l — a)
(1—-n)
2 nya(l — a)

(1>

L(v,m, ) em/s (22)

(1>

U(v,n, o) em/8,

(23)

Although not exact for low SNR, the dependence on 7 of the
upper and lower bound provides a good approximation for the
dependence of T s for large SNR and given a.. Hence, by using
U(-) and L(-), we obtain necessary and sufficient conditions
that determine the regions of stable solutions and provide ana-
lytical expressions for the transition and critical system loads.
The main result for & € (0,1) follows.

Theorem 4.5: Given the range of activity rates o« € (0,1), a
necessary condition for phase coexistence is

v > 4(342V2), (y>13.67dB). (24)
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Moreover, for high SNR, the condition is met and the transition
system load is bounded by

L, s @) < By, ) < U, iy @) (25)
while the critical system load is bounded by
L(%??M;Oé) < 13*(7705) < U(777MCY) (26)
and n,,, 7y are given by
M 2 (7/2 = 2= 4A(7)) [y
s 2 (7/2-2+4807) /v
where A(y) = /(7/8)2 — 3v/8 + 1/4.
Hence, the bad-solution region is given by R, = (0,7,],

whereas the good-solution region is R, = [nas, 1]. Similarly,
the subregion of single bad solutions Ry. = (0, 7mp.) C Ry, and
that of single good solutions, Ry. = (14, 1] C R, satisfy

me = min { T35} > i,
Tge = Max {Tgl([)’*)} < Mye

where 07, £ min{U~1(5*)}, and 1%, = max{L~'(8*)} are
obtained from the bounds.
Proof: See Appendix III. ]

The above result provides the general boundaries of the space
of solutions of our problem. It is important to note that 7,, and
na are very good approximations for high SNR of the posi-
tions of the local minimum and maximum observed in Fig. 5,
which determine the transition and the critical system loads.
As a consequence, remark that Theorem 4.5 analytically tells
us the range of 3’s for which there are either single or mul-
tiple solutions based on the up-to-a-constant approximation of
T 5 by (22) and (23). Similarly, n;, and 7, are tight bounds of
the boundaries of the single-solution regions as U( - ) and L( -)
are of Y 3( - ). Note also that the activity rate affects the system
load boundaries in the same symmetrical manner as it does the
MMSE (i.e., the worst case here also corresponds to o« = 0.5)
but has no impact on the regions of good and bad solutions, that
are only reduced in size by increasing the SNR. In particular,
these regions are characterized, in the limit of high SNR, as fol-
lows.

Corollary 4.6: In the limit of high SNR, R, — {1}, R, —
{0}, and consequently R,. — {1}, and Rs. — {0}.
Proof: The above corollary results from

(7/2-2+4/(/8)* — 37/8 + 1/4)

lim 7y = lim

Y—00 y—00 ¥
=1
, o (v/2-2—-4/(v/8)2 — 3v/8 4+ 1/4)
lim 7, = lim
Yoo y—00 ¥
=0.

Note that, given a system load 3 with 5* > (3, for sufficiently
large SNR the unique true (large-system) solution is n = 1,
which corroborates the main result in [23]. Moreover, the de-
scription of the single good solutions by analytical means allows
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Fig. 6. Upper and lower bounds on the numerical spinodal lines (thick line) for
a = 0.5.

the computation of a sufficient condition on the system load to
guarantee a given multiuser efficiency in practical implementa-
tions. More specifically, we use the aforementioned lower bound
on Y to state that any system load below L( - ) guarantees that
the given multiuser efficiency is achieved. The result is stated as
follows.

Corollary 4.7: The maximum system load (3, , for a given
activity rate and multiuser efficiency requirement n = 1 — ¢,
where 0 < € < 1, that lies in R, is lower-bounded in the
high-SNR region by

L(1=)7/8.

27
Vrnya(l — a)

Pan >

In Fig. 6 we show the numerical values of the transition and
the critical system load as a function of the SNR in the (v, 3)
space. We also use the asymptotic expansion to derive upper and
lower bounds, respectively. The plotted curves are the spinodal
lines, which mark the boundary between the regions with and
without solution coexistence. The 3, (lower branch) separates
the region where the bad solution disappears, whereas (3* (upper
branch) contains the bifurcation points at which any good solu-
tion disappears. The intersection point between both branches
corresponds to the SNR threshold (24), which provides the nec-
essary condition for solution coexistence.

2) Case o = 1: We now apply the same reasoning for the
“classical” approach to multiuser detection, corresponding to
activity rate 1. In this case, using the approximation in [30], the
system load function can be lower-bounded by

_ (-m (L—mn)em/?

Hence, we can derive the following spinodal lines.

Corollary 4.8: Given a =
phase coexistence is that

1 a necessary condition for the

v >3+2V2, (y>7.65dB).
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~(dB)

Fig. 7. Comparison of upper bounds on the spinodal lines for & = 1.0 (left)
and o = 0.5 (right).

Moreover, for high SNR, the condition is met and the transi-
tion system load is upper-bounded by

1 - m! Mo ! Y
g, < Lmtm) [T o (29)
2 N Y
and the critical system load is upper-bounded by
1-— o Nagr

2 Ny
where 7,,,» and 7y are given by

a (7/2-1/2-A(y))

" v
a (v/2-1/2+A(y))
N = ~

and A(y) = v/(1/2)% = 33/2 + 1/4.
Hence, the bad solution region is given by Ry = (0, 7]
whereas the good solution region is R, = [, 1].
Proof: The proof is analogous to that of Theorem 4.5. ®

The same consequence for the asymptotic operational region
holds here.

Corollary 4.9: In the limit of high SNR, R, — {1}, and
Rb — {0}
Proof: This corollary results from

(v/2-1/2+ /(7/2)* = 3v/2 + 1/4)

lim 7y = lim

y— 00 Yy— 00 ’7
=1
2-1/2 - 2)2—-3v/2+1/4
R 7 ok Vi SV V) TR Vi
Yy— 00 Yy— 00 ’}/
=0.

In Fig. 7, one can observe a 6 dB-difference between the spin-
odal lines corresponding to & = 0.5 and to & = 1.0. This is due
to the minimum distance of the underlying constellations, which
causes the MMSE to have different exponential decays. This can
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be interpreted by saying that the addition of activity detection to
data detection is reflected by a 6 dB increase of the SNR needed
to achieve the same system load performance. Moreover, with
a < 1, the transition system load is lower than the case where
all users are active, and, therefore, computationally good solu-
tions correspond to lower values of the maximum system load.

C. Maximum System Load With Error Probability Constraints

A natural application of the above results to practical designs
appears when the quality-of-service requirements of the system
are specified in terms of uncoded error probability. Such an ap-
plication can provide some extra insight into the plausible values
of 3 with joint activity and data detection for efficient design of
large CDMA systems. Once a multiuser-efficiency requirement
is assigned, the corresponding probability of error follows natu-
rally. Note first that, in order to detect the activity as well as the
transmitted data, our model deals with a ternary constellation
{—=1,0,1}. When any of these symbols is transmitted by each
user with constant SNR = ~ through a bank of large-system
equivalent white Gaussian noise channels with variance 1/7, the
probability of error over X’ depends on the prior probabilities as
well as the Euclidean distance between the symbols. The error
probability implied by the replica analysis is

Pnr) =20 =@ (G + 22 )

where Q(z) = [ e~"=dt is the Gaussian tail function,

+a@

¥}

The relationship between 7 and P, for our particular case can
be used to reformulate the bounds on the function Y5 in terms
of error probability.

Corollary 4.10: The maximum system load Y g(n,~, ) for
a given error probability P, 7, and activity rate is bounded for
high SNR by

L('anax:a) < Tﬂ(nmax-/'%a) < U(’Y:nmax7a)7 (32)

where

Thmax é nlaX{nP7 77gc}7

and (np,, ) is the pre-image of P..

Proof: The result is obtained by noticing that the multiuser
efficiency requirement extracted from P, must lie on the subre-
gion (n¢, 1]. ]

Notice that, if the error probability satisfies 7, < 1ge = Nmax>
then the constraint is described by the bounds on the transition
load (26). However, if 1. < 7), = 7Tmax, then, for Corollary
4.7, the maximum system load can be also easily bounded. Fig. 8
plots the critical system load for two different error probabilities
requirements and three different activity rates.

V. CONCLUSION

We have analyzed multiuser detectors for CDMA where the
fraction of active users is unknown, and must be estimated in
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15 16 17 18 19 20
v(dB)

Fig. 8. Critical system load for different uncoded error probabilities and ac-
tivity rates. Thicker lines represent numerical results, whereas regular lines show
the corresponding lower bounds. Lines with circle markers: P. = 10~2 and
o = 0.99. Lines with cross markers: P. = 1073 and o« = 0.1. Lines with
star markers: P, = 103 and o = 0.5. Lines with square markers: error prob-
ability 10=° and @ = 0.5.

a tracking phase. Using a large-system approach and statistical-
physics tools, we have derived a fixed-point equation for the op-
timal user-and-data detector, and provided asymptotic bounds
for the corresponding MMSE. Further, we have described the
space of stable solutions of the fixed-point equation, and de-
rived explicit bounds on the critical and transition system loads
for all users’ activity rates. These are consistent with the results
obtained under the classic multiuser-detection assumption (a =
1.0) made in the literature. The study of the so-called spinodal
lines allowed us to determine the regions of stable good and bad
solutions, including subregions of single solutions (also com-
putationally feasible), in the system load versus SNR parameter
space of our model. Our results show that for a user-and-data de-
tector, the boundaries of the space of solutions do depend on the
activity rate, whereas the regions of stable solutions (good and
bad) are only affected by the SNR. Hence, the overall system
load performance keeps a symmetric behavior with respect to
a. In practical implementations with high quality-of-service de-
mands, we are interested in maximizing the critical system load,
while keeping the optimal detector in the feasible subregion of
good multiuser efficiencies, such that a wider range of poten-
tial users can successfully access the channel with a given rate.
By increasing the SNR, this goal can be achieved, but for lim-
ited SNR, the certainty on the users’ activity allows allocation of
more users for a given spreading length. A relevant example cor-
responds to a system with a given error probability requirement.
For this case, we have shown that, for sufficiently large SNR, we
can choose the multiuser efficiency in the domain of feasible
good solutions, and maximize the critical system accordingly.

One of the assumptions of this paper is to model the activity
as an i.i.d. process. Further extensions of this work to non-i.i.d
scenarios can be found in [5] where the users’ activity evolves
according to a Markov process and in [31], where users transmit
encoded messages and the activity is correlated over the coded
blocks of each user.
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APPENDIX |
PROOF OF COROLLARY 3.1

We first derive the MMSE for our particular ternary input dis-
tribution in the general fixed-point equation (9) (see the equation
at the bottom of the page).

After appropriate change of variables the MMSE is

1 =2
MMSE(ny,a) = a — ez
(7, @) / ors

o’ sinh[ny — y,/17]

* acoshly — Y] + (1 — a)en/?

Since the SNR is constant among users, it follows naturally that
the large-system fixed-point equation is given by (13).

APPENDIX 11
PROOF OF THEOREM 3.3

From now on, we omit the explicit indication of the argu-
ments of the MMSE function. The lower bound is obtained
by noting that, for large SNR, the general MMSE, denoted
MMSE,, is lower-bounded by MMSE{OJ}, which describes
the detection performance when the transmitted symbols are
{0, 1}, with probabilities {1 — «, «}. In this case the MMSE
has the following form

MMSE(g 1

77 ae (yfﬁ)2)2

ok (ae™ z(y VD 4 (1 — a)e2Y)

where \, £ J1In(1=2). After some manipulation and appro-
priate changes of variables, we obtain

31y e

MMSE{g 13 =a—ae” s~

1 2XMa \2
1/ / ¢ FCF VT ZE) sech(zy/ny)dz

Use now the following asymptotic expansion for sech(2):|z|—o00

sech(z) = 2e~ =] <1+Z I —2/|z)
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and obtain
MMSEjg,1}

0

37~ 1 1 _ 2X 4 \2

o — qe— F e 5 (22— v+ 5%)
27r — 00

x 2e*V1Y (1 + i(—l)

(=1
> —1(2z— + 2202
+ [ e FE VIR gV
0

(e Seremm)e]

We now use the expansion

zeuzm> dz

MMSE;q 1)

[ \/>/ —2224((3420) /1y —y%) dz
. z\/j 2224 ((1-20) -
S IEIEY

£=0

g ).
viitdz | .

Express now the integrals in terms of the Q-function, Q(z) =

\/ﬂfm e dt
MMSEq, 1}
. Ny _ 2Xa (2
— e~ M/8 X = 67( L o (¥ _ 2Aa
2 VY

(3m 2Xa )2

— eﬂQ <@ . 3%) _ i(_l)e

QLZ1VTT | 220
. e( 1 ;«/ \2/%>ZQ<(2£—1),/777+ 2)\a>
2 Naal
(3+20) VT 23a 12
N ( 5 *\/T—_y)
e P)

(7))

MMSE(7y, )
—E [ —E{¥" 5.4}
—a— / [Ei’-' {ka(y | nvbk7 S)}

(\ﬁa[ 7<y_ﬁ)2_e_%(y+ﬁ)2})2

[Ebk{P(y“hbk?S)}
_a—/\/T

3=V 4 em3HVI’]) 4 (1 - a)ed?’
e_z(y_\ﬁ) o? sinh(ny,/7)

dy

e~ 2V a2 sinh(ny' \f7)
k] dy

V acosh(ny/7) +

(1-a)e=

7 / acosh(ny' \/7) +

(I1-a)ez
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Next, use the expansion of the Q function, [1]

e’ /2 T,— (20— 1)
1+ “’7 33
Q) = —= < Z (33)
to obtain
MMSE(g 13
_ a(l—a)e
2y

1 1 1
+

(-%) (+%) (-%)
_;_}_...4_(9(#)
(3+%) Vi

where the linear term in \,, is substituted in the common factor.
Assuming a large value 77y, and using the result

o3 U
= 2n+1 2

X

we obtain the following lower bound:

1—
MMSE (1} > 24/ o= ) s /3
’ 2mny

a(l — a)
Yy

-9 e~ /8

As far as the upper-bound is concerned, we derive the general
MMSE, denoted MMSE,,, and its particular case when all users
are assumed to be active, denoted MMSE; . Hence, we express
the corresponding integrals in an analogous manner

asinh(y,/17)
a cosh(y/m7) + (1 — a)es

—(y—van?
> tanh(y\/n7)dy.

=(y—v)?
2

e
V2T

‘We now obtain

MMSE, =a(l =) =a(l+ ¢ =G — ()

=a((1-0G)+ (G -4EG)
= a(MMSE; + (¢ — ¢a))
Next, we expand «(¢; — (), which yields
a(Cl - Ca)
—(y—ﬁ)Q

=(1- oz)em/2 / \/%_We
asinh[y,/n7] dy
(1 — a)en/? cosh(y,/m7)

=(v=vm)?
2

a cosh? ly/m) +

= (1 — a)em/Q / \/—2_’”6
tanh[y./n7]
Cosh[y / ]+ e'q'\//2+1n(1 oz)

(34)
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Consider now the following inequalities:

tanh(z) <1 and cosh(z) >

e
5

After substitution and manipulation of the denominator of (34),
we obtain

Ol(<1 - Coz)
<(1- a)en'y/2
—_\y—vnx 2

—Goym? 1 |
Var | T gr/een(E) Y

- (1 _ a) nv/2

m) _y\/ﬁ_ﬂ_d)
e~z o dy
V2T cosh (yr o — ¢>a)
A 2(1 ) .
where ¢, = 1 (===%). We readjust terms to express the

integral in a convement form

(Y’

2

(Cl Ca) S (1 - a € /8= d)a/ \/—
xsech (—\/2_ - ¢5a> dy.

We now use the following transformation in the variable of in-

tegration: y = 2z + F + \Z/fl_fy

a(C1 - Ca)

—(22—2 - 20a)2

< 21— a)eF Y /0@ "
—a)e s P
- oo V2T

x sech(z\/ny)dz

+2(1—a)e —n7v/8—da

2¢a )2
\/vw

/ e ——sech (2 ) d:

and the asymptotic expansion for sech(z) in the above deriva-
tion

—(2:4

sech(z) = 2¢7 1% (1 + i(_l)ie—ﬂlﬂ) .

This yields

a(C —Ca) <41 —a)e” /8= ¢“__
o2 P (1420 /- ez

X Z(—nf/o Nirs dz

2
4 4(1 = a)e/Bda= T2
672z27((1+28)\/ﬁ+ fa)z

X 53(—1)Z '/OOO Wor dz.
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Finally, expressing the integrals in terms of the Q function
a(Cl - Coz)

52 e
< 2(1 — a)e~M/3mtam T l (—1)!
=0

y e(““?“f*i%g)‘ o ((LH20yT _ 26
2 Vv
0o A+20)vnv | 264 )2
| (tpm, 2
+) (=1)fe z
£=0
1+2¢ 204
% 0 (( W 20 >
2 Vi
and manipulating the expansion
263,
a(C — ) <2(1— a)e_""’/g_‘b“_ T
y e( W;f%) 0 (w/n'y B 2¢>a>
2 ym
- 2
(Fo3) 2,
pe g (VI 2 )
2 VY
oo ((1+2;>m,2%)2
+3 (-1 R
=1
O <(1 +2017  2¢a )
2 Vi
0o ((1+2{)>m+f/¢%)2
+ Z(—l)ie 7
(=1
1+20 20
N <( W 29 )
2 Vi
we obtain, after using the series expansion (33)
a (G = Ca)
<9 (1- a)ae_m/s 1 n 1
™Y (1 _ 44_0) (1 4 4%)
nY ny

ny

R T
(3 _ i) (3 n &) VY
Y
where the linear term in ¢, = 3 In( @) is substituted in the
common factor, and quadratic terms are neglected.
Using the same result as before on the
n41
23, %, we obtain the upper bound:

series

ma(l — a)
nmy

e~ /8.

(G —Ca) <

Finally, using the upper bound given in Lemma 3.2 for BPSK,
the overall MMSE can be upper-bounded by

MMSE,, < 2ae™"/? 4 \/@e—nv/s.
B Ual
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APPENDIX 111
PROOF OF THEOREM 4.5

We analyze the function

G(n) = (1 =n)e"//n (35)

where u is a constant, which entirely describes the dependence
of T4 on n for sufficiently large 7. By simple derivation of
(35), it is easy to observe that the solution has critical points in
the domain (0, 1] if and only if > (3 + 1/8)/2. These points
are

Cu—1/2—\/u* —3u+1/4
" 2u
u—1/24 /u?2—3u+1/4
M =
2u

and lie in the domain (0, 1]. In fact, note that u? — 3u + 1/4 <
(u — 3/2)2, and thus it can be verified that 0 < 1/2u <
Mm < nu < 1 —1/u < 1. By using the second deriva-
tive of (35) we observe that these solutions correspond to
a local minimum and a local maximum, respectively. Let
us now study (35) to justify the range of values of the crit-
ical system load. G(n) is a continuous function in (0, 1]
that takes positive values. Since G(7) tends to 0 as 7 ap-
proaches 1, and tends to infinity as n approaches O, it can
be concluded that the range for which G(7) has only one
pre-image is (0,G(nm)) U (G(nar),0). Hence, there are
single pre-images in the ranges (0, min{G~(G(ns))}) and
(max{G~ {(Glmm))}, 1] For Glum) < G(-) < Gln),
there are three pre-images and for G(7,,) and G(nys) there
are exactly two due to the local minimum and maximum
(see Fig. 5). Then, the smallest pre-image among them lies
on [min{G~Y(G(nar))},nm] whereas the largest lies on
[nar, max{G (G (nm))}]. In conclusion, the overall smallest
pre-images belong to

Ry = (0,min{G ' (G(n))})
Ulmin{G~ (G (na))}, tm] = (0,1]  (36)
whereas the largest pre-images belong to

Ry = [, max{G~"(G(nm))}]
Ulmax{G~"(G(nm))}, 1] = [nar, 1]-

In particular, R15 2 (0, min{G~Y(G(nr)}) C Ry and Roy 2
(max{G~Y(G(nm))},1] C R2. By bounding the MMSE using
(16) and replacing u = /8, we obtain the desired results.
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