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Abstract— We study iterative multiuser joint decoding in large
randomly spread code division multiple access systems under
the assumption that the number of users accessing the channel
is unknown by the receiver. In particular, we focus on the
factor graph representation and iterative algorithms based on
belief propagation. We study a suboptimal iterative scheme that
jointly detects the encoded data and the users’ activity. By
using the replica method from statistical physics, we analyze the
performance of the iterative detector. Using density evolution,
we provide a fixed-point equation of the overall iterative system
where the probability messages depend on the users’ activity.
Finally, when the scaling between the log number of users and
the block length is below a threshold, we show that in the large-
system limit a simple structure on the users’ codes yields a
multiuser efficiency fixed-point equation that is equivalent to the
case of all-active users with a system load scaled by the activity
rate.

I. INTRODUCTION

The interplay between multiuser detection (MUD) and

channel coding in multiple-access channels has been recently

studied from different angles. The capacity region of the

Gaussian multiple-access channel is known to be achievable

by successive interference cancellation (IC) and single-user

decoding [1], [2]. Practical approaches based on code division

multiple access (CDMA) and iterative joint decoding have also

been studied [3], [4], [5].

The authors in [4] provide a unified framework to analyze

the performance of iterative multiuser joint decoding with

CDMA in the limit for large block length and system dimen-

sions. Their approach is based on a factor graph representation

of the a posteriori probabilities (APP’s) of the information

symbols using belief propagation [6]. This characterization

allows the derivation of iterative algorithms that approxi-

mate optimal maximum a posteriori (MAP) decoding. The

asymptotic performance of belief propagation can be analyzed

by using density evolution techniques [7]. Based on results

from linear MUD for uncoded systems [8], [4] characterized

the performance of large multiuser systems using suboptimal

iterative IC and decoding with linear filtering.

Recalling the main result for the large-system analysis of

optimal MUD for uncoded systems ([9, Prop. 1]), the authors

in [5] provide a modified version by replica method that

characterizes the large-system performance of the non-linear

data iterative joint decoder. In contrast with previous work on

uncoded CDMA [10], the system performance is determined

by a dynamic fixed-point equation on the multiuser efficiency.

In this paper, we study large-system analysis of iterative

multiuser joint decoding under the framework of [11], in

which the number of users accessing the channel (among

other parameters) is time-varying and unknown, and must be

estimated together with the transmitted data. Unlike previous

works [12], we adopt here a novel approach that combines

a blockwise encoding of activity and a bitwise encoding of

data and decode active as well as non-active users based on

a prior information on the activity. We analyze the system’s

performance using density evolution and show that below a

threshold between the log number of users and the code block

length the corresponding large-system fixed-point equation

[10] scales with the average number of active users.

This paper is organized as follows. Section II introduces

the system model and the main notations used throughout.

Section III describes the iterative MUD factor graph and the

belief propagation decoding algorithm. Section IV presents

the main results on density evolution showing the system’s

dynamic fixed-point equations. Finally, section VI draws some

concluding remarks.

II. SYSTEM MODEL

We consider a synchronous Gaussian CDMA system where

K is the maximum number of users entitled to access the

system, N is the length of the spreading sequences and L is

the length of the users’ codewords. The corresponding received

signal matrix is given by

Y = SAX + Z (1)

where Y = (y1, . . . ,yL) ∈ R
N×L is the received signal,

S = (s1, . . . , sK) ∈ R
N×K is the matrix of the normalized

spreading sequences, A = diag(a1, . . . , aK) ∈ R
K×K is

the diagonal matrix of the users’ signal amplitudes, Z ∈
R

N×L is an additive white Gaussian noise matrix with i.i.d.

entries ∼ N (0, 1), and X = (x1, . . . ,xK)T ∈ R
K×L is

the matrix containing the users’ coded blocks, with xk =
(xk,1, . . . , xk,L)T being the codeword of the k-th user.

We assume that users are active with probability α �
Pr{user k active}, 1 ≤ k ≤ K and employ binary phase-

shift keying (BPSK) modulation with uniform probability. We

also suppose for ease of analysis equal power users such that

ak =
√

γ, where γ is the average received signal-to-noise ratio

(SNR). We define the maximum system load as β � K
N .
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Fig. 1. Block diagram of the transmission.

A. Encoding of Data and Activity

Let B = (b1, . . . , bK)T ∈ R
K×B be the information matrix

of all users, where B is the length of an information message

and bk = (bk,1, . . . , bk,B)T is the k-th user information vector.

Whenever user k is active, then bk ∈ F
B
2 (Galois field

GF(2B)), otherwise we set bk,i = 2, ∀i = 1, . . . , B for

sake of analysis1. We assume that active-user vectors appear

with probability α and their information vectors are encoded

independently. The inactive message appears with probability

1 − α. The nature of the information messages varies from

active to inactive users. For instance, it is easy to see that

in the case of inactive users, the information symbols are not

independent: if the first one is represented by 2, all the rest are

2 as well. In order to incorporate the activity of users into the

decoding process, we add one symbol at the beginning of each

coded block, which can be either one or zero, depending on

whether the user is active or not, respectively. Hence, if user

k is active, we can define an encoding function φk over each

user’s message set Mk ⊆ F
B
2 , φk : Mk → {−1, +1}L−1

such that

φk(mk) = (xk,2, . . . , xk,L) (2)

where mk ∈ Mk is an input message. The code Ck of an

active user is then defined as:

Ck = {x ∈ {−1, +1}L : x = (+1, φk(mk)), mk ∈ Mk}
(3)

For inactive users, Ck is only modulated as follows:

Ck = {x = (0, . . . , 0) ∈ R
L}. (4)

Note that this is equivalent to considering a code C̃k that

incorporates the all-zero codeword (no signal is transmitted)

representing the non-activity. While the presentation given in

this paper is general, we will focus our examples on trellis

codes. We differentiate two cases: if a user is active, its

BPSK stream is interleaved across time. If the user is not

active, the all-zero codeword is transmitted. Remark that the

resulting vectors accessing the channel are independent but

their components might be correlated, due to the temporal

correlation induced by the inactive users transmitting the all-

zero codeword. The interleaved signals are then spread and

1Note that this is simply a convention to represent the inactivity that is
hidden in the encoding function. It therefore does not affect the results.

transmitted over the channel. The overall transmission scheme

is depicted in Fig. 1, where Πi denotes each user’s interleaver.

If the codes Ck are convolutional codes, the above con-

siderations result in a trellis that combines the activity and

encoding functions. The overall trellis can be decoded with

the forward-backward algorithm [13].

III. ITERATIVE JOINT DECODING UNDER BELIEF

PROPAGATION

Our goal is to compute the a posteriori p.m.f. of the

information symbols:

Pr(b1, . . . , bK |Y ,S,A) (5)

However, the computation of (5) by brute force is infeasible

even for a small maximum number of users due to the large

dimensions. In order to obtain a low-complexity detector, we

resort the canonical factor graph representation of a multiuser

coded system [4] and consider the application of the well-

known sum-product algorithm [6]. Although in the model

presented above symbols are correlated during the inactive

stream, we study symbol-by-symbol belief propagation (BP)

decoding as a suboptimal mismatched strategy to approximate

iteratively the marginal probabilities of (5). This method would

asymptotically replicate large-system optimal detection [9] in

the case of a system with collocated users, where coded

sequences could be interleaved across the user dimension.

However, given our particular scheme, we conjecture that the

performance loss is negligible in the large-system limit since

the correlation only appears through non-active users, using

symbol 0, which does not belong to the data alphabet.

The application of BP to our model results in message

passing between the individually optimum multiuser detec-

tor (IO-MUD) and the users’ soft-input soft-output (SISO)

decoders. In this case, our suboptimal detector assumes that

each coded symbol can take values in the ternary constellation

X � {−1, 0, +1}. We thus use a three-dimensional probability

vector to describe the exchanged messages between the two

blocks. Hence, the outgoing messages from the IO-MUD at

iteration � ∈ N, for user k = 1, . . . , K and time l = 1, . . . , L

are denoted as q
(�)
k,l =

(
q
(�)
k,l(−1), q(�)

k,l(0), q(�)
k,l(1)

)
, where q

(�)
k,l

stands for the extrinsic probability of the symbol xk,l given the

channel observation. The outgoing messages from the SISO

decoder are denoted as p
(�)
k,l =

(
p
(�)
k,l(−1), p(�)

k,l(0), p(�)
k,l(1)

)
,

and are the extrinsic probabilities of the coded symbols [7].

When the users’ codes are convolutional codes, the messages

p
(�)
k,l are obtained by applying the forward-backward algorithm

to the combined trellis. Note that the above algorithm is

suboptimal since it ignores the correlation introduced by the

inactive users, by exchanging different messages over a ternary

constellation for every time instance l = 1, . . . , L.

According to [4], [6], the sum-product rules that relate the
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probabilities q
(�)
k,l and p

(�)
k,l are stated as follows for x ∈ X :

q
(�)
k,l(x) ∝

∑
x∈XKxk,l=x

e−
1
2 ||yl−

∑ K
j=1 sjajxj,l||2

∏
j �=k

p
(�−1)
j,l (xj,l),

(6)

p
(�+1)
k,l (x) ∝

∑
{x∈Ck,xk,l=x}

∏
j �=l

q
(�)
k,j(x) (7)

We assume that the message p
(0)
k,l = (α

2 , 1 − α, α
2 ) for k =

1, . . . , K and time l = 1, . . . , L. Finally note that q
(�)
k,l and p

(�)
k,l

can be viewed as random variables, which depend on both the

channel and code parameters.
IV. PERFORMANCE ANALYSIS

In order to analyze the performance over the iterations, we

employ density evolution. Density evolution has been applied

to study low-density parity check (LDPC) codes [7] as well

as iterative MUD [4], [5]. Density evolution is based on the

principle that as the length of the codes is sufficiently large, the

p.d.f. of the messages exchanged at each iteration converges to

a deterministic one. In our case, we employ statistical physics

techniques to characterize the nature of the messages q�
k,l.

A. Large-System Analysis
Large-system analysis is remarkably simpler and accurately

mimics the behavior of the system for not-so-large dimensions

[4], [5]. In particular, we let K, N → ∞ keeping their ratio,

the system load β = K/N , fixed. Under these conditions, by

recalling the decoupling principle [10] for optimum MUD we

obtain a single-user equivalent Gaussian characterization of the

uncoded CDMA channel. More interestingly, the decoupling

principle can be generalized to the case of coded CDMA sys-

tems where the users’ symbols are not independent from one

time to another [14]. In particular, in the large-system limit,

for every time index l = 1, . . . , L we obtain a set of K parallel

additive Gaussian channels with colored noise N (0, Σk) and

time-varying variances given by (Σk)l,l = (γkηl)−1, l =
1, . . . , L. where η = (η1, . . . , ηL) is the multiuser efficiency

vector, characterizing the multiuser efficiency at every symbol

instant.
We now present our main result that describes the dynamical

system behavior by updating the distribution of the IO-MUD

messages at each iteration. Note that due to the large-system

approach, the extrinsic probabilities provided by the SISO

decoders p
(�)
k,l are independent of k, hence resulting in a 3×L

matrix denoted by P
(�)
ext. Generalizing [4], [5], the multiuser

efficiency is given in terms of a L-dimensional fixed-point

equation η(�) = Ψ(η(�−1), β, α, γ), that characterizes the

density evolution mapping, as η evolves through the iterations.
Claim 4.1: Consider an iterative MUD system where the

number of users is unknown and parameterized by a Bernoulli

variable Aα with success probability α. Then, the multiuser

efficiency at iteration �, η(�) = Ψ(η(�−1), β, α, γ) ∈ R
L, of

a belief-propagation iterative joint multiuser decoder is given

by the globally stable solutions of the fixed point equations:

η
(�)
l =

(
1 + βE

Aα,P
(�−1)
ext ,z,x,γ

[
γ (xl − x̂l)

2
])−1

(8)

for l = 1, . . . , L , where x̂l(η(�), η(�−1), γ) is the l-th entry

of the MMSE (minimum mean square error) symbol estimate

x̂ = E[x|y, γ,P
(�−1)
ext ] over the single-user equivalent vector

Gaussian channel:

y =
√

γx + z (9)

where x,y ∈ R
L, x ∼ P

(�−1)
ext , and z ∼ N (0, Σ) with Σl,l =

1/η
(�)
l , l = 1, . . . , L.

The above result defines implicitly Ψ and describes the

performance of an iterative joint decoder under belief prop-

agation, assuming that the symbols at time l = 1, . . . , L can

be correlated. In terms of convergence, if the above density

evolution algorithm has a unique fixed point η = (1, . . . , 1),
the system approaches single-user performance. On the other

hand, if at any iteration �, Ψ has a fixed point in (0, 1) in any

of its L components, i.e. there exists at least an l such that

η
(�)
l = η

(�−1)
l < 1, then the multiuser detector cannot remove

the interference at time l. Otherwise, the multiuser efficiency

η converges to 1 ∈ R
L through the iterations.

Equation (8) can also be interpreted as an analogous case

of [15], where the fading distribution takes a specific form

characterized by Aα. Notice, however, that the activity factor

comes into play in the encoding mapping and is independent of

the nature of channel. Therefore, (8) can be extended to fading

channels with soft channel estimation feedback, allowing for

a further generalization. Furthermore, (8) could potentially

encompass correlated and non-ergodic fading, generalizing the

study of [15] for i.i.d. fading to more general distributions.

B. Concentration

The concentration theorem in [4] for coded CDMA refers to

the existence of a limiting distribution of the output messages

p
(�)
k,l for L → ∞ under some conditions on the user codes

Ck. From Section II-A, the representation of the inactivity

can be characterized as a repetition code of rate 1/L. We

compute now its large-system performance based on the error

probability per user, Pe, according to the encoding/decoding

scheme described above. The exact expression of P
(�)
(e|Aα=1)

and P
(�)
(e|Aα=0), the probabilities of making an incorrect activity

decision at iteration �, is in general difficult to obtain. How-

ever, we can compute simple upper bounds at any iteration,

as the following result shows;

Proposition 4.2: Under the equivalent Gaussian vector

channel (9), we have that

P
(�)
(e|Aα=1) ≤ 2

√
1 − α

α
e−

Lη(�)γ
8 ,

P
(�)
(e|Aα=0) ≤

√
α

1 − α
e−

Lη(�)γ
8 (10)

where η(�) ≤ min1≤l≤L η
(�)
l .

Assuming that all users transmit their codewords indepen-

dently, the system’s total error probabilities in each case,

P
(�)
(E|Aα=1) and P

(�)
(E|Aα=0), satisfy P

(�)
(E|Aα=1) ≤ KP

(�)
(e|Aα=1)

and P
(�)
(E|Aα=0) ≤ KP

(�)
(e|Aα=0) respectively.

Consider now that the blocklength depends on K, L =
L(K), and let L = L(K) be such that
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lim
K→∞

log K

L(K)
= ρ, (11)

where ρ ≥ 0 expresses the tradeoff between the blocklength
and the logarithm of the maximum number of users as K
grows large. Remark that ρ = 0 implies that the block-

length grows faster than log K. Note that Proposition 4.2

immediately implies that P
(�)
(S|Aα=1) � 1 − P

(�)
(E|Aα=1) and

P
(�)
(S|Aα=0) = 1 − P

(�)
(E|Aα=1) (the conditional probabilities of

successful activity detection) can easily be lower-bounded as

P
(�)
(S|Aα=1) ≥ 1 − 2

√
1−α

α e−L(η(�)γ/8−ρ) and P
(�)
(S|Aα=0) ≥

1 −
√

α
1−αe−L(η(�)γ/8−ρ).

Notice that it follows that P
(�)
(S|Aα=1) and P

(�)
(S|Aα=0) con-

verge to 1 as L → ∞, ∀ρ < ρth(η(�), γ), where

ρth(η(�), γ) � η(�)γ

8
, (12)

whereas for ρ ≥ ρth(η(�), γ) this is not true in general.

Remark that ρth is fully determined by the actual SNR of the

equivalent large-system Gaussian channel, i.e. by increasing

γη(�), the range of feasible scaling factors can be increased. In

particular, by fixing γ, ρth depends exponentially on the level

of interference η(�) and achieves its maximum value when the

interference is removed (i.e., at η(�) = 1).

When ρ < ρth(η(�), γ) the density evolution assumption

(L → ∞) allows us to conclude that correct activity detection

is achieved with probability Ps → 1. This implies that for

every inactive user, p
(�)
k,l → (0, 1, 0) in the limit of large code-

word length. We therefore consider a compound of two types

of message probabilities that switch depending on whether

soft decoding operates on an active or an inactive coded block.

Consequently, the limiting distribution of the messages over an

active block exists under the same conditions as in the general

case [4], whereas the limiting distribution of the messages over

an inactive one exists since it concentrates all the probability

in the symbol 0. As a result of the decoupling structure in

the p
(�)
k,l distribution for L → ∞, the application of claim 4.1

to our system yields a simplified one-dimensional fixed-point

equation. We therefore define p
(�)
ext = p

(�)
k,l ∈ R

3 to simplify

the notation. In fact, since the activity is perfectly detected

after the first iteration for arbitrary SNR and L → ∞, the

effect of the correlation among symbols becomes negligible

and belief propagation can approximate the optimal detection

of the interleaved active-user codewords [16]. Symbols are

no longer correlated due to the effect of the interleaver, and

the resulting density evolution mapping takes a unique one-

dimensional form η(�) = Ψ(η(�−1), β, α, γ, ρ) given in the

following corollary:

Corollary 4.3: The large-system fixed-point equation of a

system with unknown number of equal-power users that per-

fectly estimates their activity at a particular iteration � ≥ 1
due to ρ < ρth(η(�−1), γ) converges with probability 1 to:

η(�) =

(
1 + β′γ

(
1 − E(pext,z,x|Aα=1)

[
γx̂2

]) )−1

(13)

where β′ = βα and x̂(η(�−1), η(�), γ) = E[x|y, γ,p
(�−1)
ext ]

is the MMSE estimate for the single-user scalar Gaussian

channel:

y =
√

γx + z (14)

where x, y ∈ R, x ∼ p
(�−1)
ext , p

(�−1)
ext ∈ R

3 and z ∼ N (0, 1
η(�) ).

When ρ ≥ ρth, there is less knowledge about the

actual limiting distribution of p
(�)
ext as L → ∞. How-

ever, we can provide a lower bound on the system’s per-

formance using uncoded-activity detection with p
(�)
ext =[

αp
(�)

ext|Âα=1
(1), 1 − α, αp

(�)

ext|Âα=1
(3)

]T

for Aα = 1 and

p
(�)
ext =

[
α
2 , 1 − α, α

2

]T
for Aα = 0 ∀� ≥ 0, where Âα is

the hard decision of the decoder on Aα. Since the message

probabilities do not exploit the correlation between inactive

symbols, the resulting lower bound on the density evolution

mapping also takes a unique one-dimensional form.

As ρth is a function of η at any iteration �, and η ∈ (0, 1],
the impact of ρth into any system with tradeoff ρ can be better

analyzed through the threshold value

ηth(ρ, γ) � min
{

8ρ

γ
, 1

}
, (15)

which establishes the minimum multiuser efficiency above

where the system’s activity detection satisfies PS → 1 as

L → ∞ and consequently, the fixed-point (13) holds.

Remark that all systems that encounter a fixed-point

Ψ(η(��)) = η(��) above ηth for some iteration �� (i.e., η(��) >
ηth), undergo two different phases. The first phase is found

for ρ ≥ ρth during the initial iterations of the decoder,

where η(�−1) ∈ (0, ηth], � < ��, hold. As a result, the error

due to activity detection cannot be neglected and leads to a

performance loss bounded by the uncoded-activity scenario.

The second phase corresponds to η(�−1) being sufficiently

large such that η(�−1) > ηth, � ≤ ��. Then, over the following

iterations, Corollary 4.3 provides the fixed-point equation of

a system with a known number of users and load β′ = βα
[5]. Notice that the same arguments on the convergence of Ψl,

l = 1, . . . , L, in the general case hold here for Ψ.

V. NUMERICAL RESULTS

The above results imply that under some conditions the

analysis of a coded multiuser system with user-and-data detec-

tion can be converted into the analysis of a standard multiuser

system where the number of users is fixed and known. The

activity can be detected perfectly after a few iterations, and the

behavior of the dynamical fixed-point equation has the form

of a data detector with a scaled system load.

In Fig. 2 we illustrate Corollary 4.3. We first show the

density evolution mapping function corresponding to an over-

loaded system with β = 4.5 and a 0.02 resolution grid on the

η-axis for the standard MUD case (all users active α = 1,

thinner solid line) and a case where all users are active with

probability α = 0.5 and ρ = 0.0 (ηth = 0.0, solid line).

We also plot two lower bounds based on density evolution

for α = 0.5 with non-vanishing tradeoff between the block

length and the logarithm of the number of users: one with
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ρ = 0.05 (ηth = 0.1, dash-dotted line) and another with

ρ = 0.5 (ηth = 1, dotted line). The codeword length used here

is L = 4000, for Eb/N0 = 6dB and the number of realizations

are 100. Remark that for α = 1, the system converges to

a fixed point at very low multiuser efficiency and results in

the system not converging to remove the interference. On the

other hand, when users are active with probability α = 0.5 and

ρ = 0.0, we have that ρ < ρth(η, γ) for η ∈ (0, 1], the unique

solution of Ψ(η) = η is η = 1 and the system converges to

single-user performance. The same convergence is achieved

when the system has ρ = 0.05. In this case, the true system

performance is lower-bounded by uncoded-activity detection

for η ∈ (0, 0.1], and coincides with the case ρ = 0.0 for

η ∈ (0.1, 1] since perfect activity detection is achieved due

to ρ < ρth. Note that in both cases the activity rate scales

the system load after the first iteration, and thus, the curve

with α = 0.5 significantly improves the performance of the

α = 1-case. However, when α = 0.5 and ρ = 0.5, we have

that ρ ≥ ρth ∀η ∈ (0, 1] since maxη ρth = ρth(1, γ) = 0.49
and the system only experiments the stage where the lower

bound holds. In that case, there is a remaining constant error

in the whole range η ∈ [0, 1] and the lower bound encounters

a fixed point at approx. η = 0.125.

0 0.2 0.4 0.6 0.8 1
0
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0.2

0.3
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η
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α = 0.5
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ηth = 0.1

α = 0.5
ρ = 0.5

Fig. 2. Mapping function Ψ(η, β, α) with α = 1.0 and α = 0.5 for
ρ = 0.0, 0.01, 0.5, at Eb/N0 = 6dB and β = 4.5. Solid lines represent the
density evolution with the (5, 7)8 convolutional code for a codeword length of
L = 4000 and 100 realizations for α = 1.0 and for α = 0.5 with ρ = 0.0.
For α = 0.5 and ρ = 0.01 (dash-dotted line), it is shown the lower bound
on Ψ(η, β, α) for η ∈ (0, 0.1] and the exact mapping for η ∈ (0.1, 1]. For
α = 0.5 and ρ = 0.5, the lower bound is shown ∀η ∈ (0, 1].

VI. CONCLUSIONS

We have studied the large-system performance of iterative

multiuser joint decoding under belief propagation using den-

sity evolution when the number of active users accessing the

channel is unknown at the receiver. Due to inactive users

transmitting the all-zero codeword, the channel model is no

longer memoryless, since symbols are correlated over time.

We employ a low-complexity symbol-by-symbol iterative mul-

tiuser detector that ignores this correlation and analyze its large

system performance. In particular, using the replica method,

we obtain the multidimensional fixed-point equation of the

multiuser efficiency for finite block length. We then study

the limiting performance for large block length using density

evolution techniques. In this case, we first show that in the

limit for large block length, the system effectively performs

perfect activity detection when the maximum number of users

and the blocklength scale appropriately below a threshold.

Otherwise, we provide a lower bound on the performance

based on uncoded-activity detection. When perfect-activity

detection is achieved, the fixed-point equation is equivalent

to that of a system where the number of users is fixed and

known, but with a scaled system load.

REFERENCES

[1] T. Cover and J. Thomas, Elements of Information Theory, Wiley-
Interscience, New York, 2006.

[2] A. Grant and C. Schlegel, Coordinated Multiuser Communications,
Springer, New York, 2006.

[3] M. Reed, C. Schlegel, P. Alexander, and J. Asentorfer, “Iterative mul-
tiuser detection for CDMA with FEC: Near single-user performance,”
IEEE Trans. Commun., vol. 46, pp. 1693–1699, Dec. 1998.

[4] J. Boutros and G. Caire, “Iterative multiuser joint decoding,” IEEE
Trans. Inf. Theory, vol. 48, no. 7, pp. 1772–1793, Jul. 2002.

[5] G. Caire, R. R. Mller, and T. Tanaka, “Iterative multiuser joint decoding:
Optimal power allocation and low-complexity implementation,” IEEE
Trans. Inf. Theory, vol. 50, no. 9, pp. 1950–1973, Sep. 2004.

[6] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[7] T. Richardson and R.L. Urbanke, Modern Coding Theory, Cambridge
University Press, New York, 2008.

[8] D. Tse and S. Hanly, “Linear multiuser receivers: effective interference,
effective bandwidth, and user capacity,” IEEE Trans. Inf. Theory, vol.
45, no. 2, pp. 641–657, March 1999.

[9] T. Tanaka, “A statistical-mechanics approach to large-system analysis
of CDMA multiuser detectors,” IEEE Trans. Inf. Theory, vol. 48, no.
11, pp. 2888–2910, Nov. 2002.
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