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Abstract—We analyze multiuser detection under the assump-
tion that the number of users accessing the channel is unknown
by the receiver. Our main goal is to determine the performance
loss caused by the need for estimating the identities of active
users, which are not known a priori. To prevent a loss of opti-
mality, we assume that identities and data are estimated jointly,
rather than in two separate steps. We examine the performance
of multiuser detectors when the number of potential users is
large. Statistical-physics methodologies are used to determine the
fixed-point equation whose solutions yield the multiuser efficiency
of the optimal detector. Special attention is paid to the large
signal-to-noise ratio, which yields tight closed-form bounds on
the minimum mean-squared error. These bounds analytically
illustrate the set of solutions of the fixed-point equation, and
their relationship with the maximum system load. By identifying
the region of computationally feasible solutions, we study the
maximum load that the detector can support for a given SNR
and quality of service, specified by the multiuser efficiency.

I. INTRODUCTION

In multiple-access communication, the evolution of user
activity plays an important role. From one time instant to
the next, some new users may become active and some old
users inactive, while parameters of the persisting users, such as
power or location, may vary. Most of the available multiuser
detection (MUD) theory is based on the assumption that the
number of active users is constant, known at the receiver, and
equal to the maximum number of users entitled to access the
system [1]. If this assumption is not verified, the receiver
may exhibit a serious performance loss [2], [3]. In [4], the
more realistic scenario in which the number of active users is
unknown a priori, and varies with time with known statistics,
is the basis of a new approach to detector design. The present
work follows in the footsteps of [4], and is devoted to large-
system analysis of this new type of detectors for Code Division
Multiple Access (CDMA). Our main goal is to determine
the performance loss caused by the need for estimating the
identities of active users, which are not known a priori. In this
paper we restrict our analysis to a worst-case scenario, where
detection cannot improve its performance from past experience
due to a degeneration of the activity model (for instance,
assuming a Markovian evolution of the number of active
users) into an independent process [5]. The same analysis
applies to systems where the input symbols accounting for
data and activity are interleaved before detection. To prevent
a loss of optimality, we assume that identities and data are
estimated jointly, rather than in two separate steps. Our interest

is in randomly spread CDMA systems in terms of multiuser
efficiency, whose natural dimensions (number of users K,
and spreading gain N ) grow to infinity, while their ratio (the
“system load”) is kept fixed. In particular, we consider the
optimal maximum a posteriori (MAP) multiuser detector, and
use tools recently adopted from statistical physics [6], [7],
[8], [9]. Of special relevance in our analysis is the decoupling
principle introduced in [7] for randomly spread CDMA.

The results of this paper focus on the degradation of
multiuser efficiency when the uncertainty on the activity of
the users grows and the SNR is sufficiently large. Here, we
go one step beyond the simple application of the large-system
fixed-point equation [6], [7] into our model and we provide a
new high-SNR analysis on the space of fixed-point solutions
showing explicitly its interplay with the system load for a non-
uniform ternary and parameter-dependent input distribution.
By expanding the minimum mean square error for large SNR,
we obtain tight closed-form bounds that describe the large
CDMA system as a function of the SNR, the activity factor
and the system load and some trade-off results between these
quantities are derived. Of special novelty here is the study
of the impact of the activity factor in the CDMA perfor-
mance measures (minimum mean-square error, and multiuser
efficiency). Besides, we identify the region of “meaningful”
multiuser efficiency solutions and derive consequences for
engineering problems of practical interest.

II. SYSTEM MODEL

We consider a CDMA system with an unknown number of
users [4], and examine the optimum user-and-data detector.
In particular, we study randomly spread direct-sequence (DS)
CDMA with a maximum of K active users, where the received
signal at time t is

yt = SAbt + zt (1)

where yt ∈ RN , with N the length of the spreading se-
quences, S ∈ RN×K the matrix of the sequences, A =
diag(a1, . . . , aK) ∈ RK×K is the diagonal matrix of the users’
signal amplitudes, bt = (b1t , . . . , b

K
t ) ∈ RK is the users’ data

vector, and zt is an additive white Gaussian noise vector with
i.i.d. entries ∼ N (0, 1). We assume that ak =

√
γ, where
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γ is the average received signal-to-noise ratio (SNR)1. We
define the system’s activity rate as α , Pr{user k is active},
1 ≤ k ≤ K. Active users employ binary phase-shift keying
(BPSK) with equal probabilities. This scheme is equivalent
to one where each user transmits a ternary constellation
X , {−1, 0,+1} with probabilities Pr{bkt = −1} = Pr{bkt =
+1} = α

2 and Pr{bkt = 0} = 1− α. We define the maximum
system load as β , K

N .
In a static channel model, the detector operation remains

invariant along a data frame, indexed by t, but we often omit
this time index for the sake of simplicity. Assuming that the
receiver knows S and A, the a posteriori probability (APP)
of the transmitted data has the form

p(b|y,S,A) =
1√
2π
e−
‖y−SA b‖2

2
p(b)

p(y|S,A)
. (2)

Hence, the maximum a posteriori (MAP) joint activity-and-
data multiuser detector solves

b̂ = arg max
b∈XK

p(b|y,S,A). (3)

Similarly, optimum detection of single-user data and activity is
obtained by marginalizing over the undesired users as follows:

b̂k = arg max
bk

∑
b\bk

p(b|y,S,A). (4)

A. The large-system decoupling principle

In a communications scheme such as the one modeled
by (2), the goal of the multiuser detector is to infer the
information-bearing symbols given the received signal y and
the knowledge about the channel state. This leads naturally to
defining the corresponding free energy [6], normalized to the
number of users and with the choice T = 1, as

FK , − 1
K

ln p(y | S) (5)

To calculate this expression we make the self-averaging as-
sumption, which states that the randomness of (5) vanishes as
K →∞. This is tantamount to saying that the free energy per
user FK converges in probability to its expected value over
the distribution of the random variables y and S, denoted by

F , lim
K→∞

E
{
− 1
K

ln p(y | S)
}
. (6)

To compute the free energy through replica analysis, one
of the cornerstones in large deviation theorem, the Varadhan’s
theorem [10], is invoked to transform the calculation of the
limiting free energy into a simplified optimization problem,
whose solution is assumed to exhibit symmetry among its
replicas. More specifically, in the case of a MAP individu-
ally optimum detector, the optimization yields a fixed-point
equation, whose unknown is a single operational macroscopic
parameter, which is claimed to be the multiuser efficiency (re-
flecting the degradation factor of SNR due to interference) of

1The analysis presented in this paper can be easily extended to different
statistics of the ak coefficients, like for example those induced by Rayleigh
fading.

an equivalent Gaussian channel [7]. Due to the structure of the
optimization problem, the multiuser efficiency must minimize
the free energy. The above is tantamount to formulating the
decoupling principle:

Claim 2.1: [7], [9] Given a multiuser channel, the distri-
bution of the output b̂k of the individually optimum (IO)
detector, conditioned on bk = b ∈ X being transmitted with
constant amplitude a =

√
γ, converges to the distribution

of the posterior mean estimate of the single-user Gaussian
channel

y =
√
γbk +

1√
η
z (7)

where z ∼ N (0, 1), and η, the multiuser efficiency [1], is the
solution of the following fixed-point equation:

η−1 = 1 + βγMMSE (γ, η, α) . (8)

If (8) admits more than one solution, we must choose the one
minimizing the free energy function

F =− E
[∫

p(y | bk) ln p(y | bk)dy
]

− 1
2

ln
2πe
η

+
1

2β

(
η ln e+ ln

2πe
η

)
. (9)

In (8)-(9), p(y | bk) is the transition probability of the large-
system equivalent single-user Gaussian channel described
by (7), and

MMSE(γ, η, α) , E
[(
bk − b̂k

)2
]

(10)

denotes the minimum mean-square error in estimating bk in
Gaussian noise with amplitude equal to

√
γ, where b̂k =

E
[
bk|y

]
is the posterior mean estimate, known to minimize

the MMSE [11].

III. LARGE-SYSTEM MULTIUSER EFFICIENCY

We start by shaping our problem into the statistical-physics
framework [6], [7] and invoke the decoupling principle (Claim
2.1) in the multiuser system (1), so as to use its single-user
characterization. By doing this, the system is converted into
the scalar Gaussian channel (7), where the input distribution
for an arbitrary user k takes values X = {−1, 0,+1} with
probabilities α

2 , 1−α and α
2 , respectively, the signal amplitudes

from matrix A are a =
√
γ, where γ is the SNR per active user

(we shall call it SNR), and the inverse noise variance is equal
to the multiuser efficiency η. Hence, η is the solution of the
fixed-point equation (8) that minimizes (9), where the MMSE
is given by (10). By applying Claim 2.1 [7], the fixed-point
equation of the user-and-data detector can be written as

η =
1

1 + βγ

(
α−

∫
1√
2π
e
−y2

2
α2 sinh(ηγ−y√ηγ)

α cosh(ηγ−y√ηγ)+(1−α)eη
γ
2

dy
)

(11)
Numerical solutions of (11), showing η vs. SNR at a load

β = 3/7 are shown in Fig. 1. For low SNR, noise dominates,
and the performance of the MMSE and the multiuser efficiency
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Figure 1. Large-system multiuser efficiency of the user-and-data detector
under MAP with prior knowledge of α and β=3/7.

is degraded as α grows, since the presence of more active users
adds more noise to the system. On the other hand, for high
SNR the MMSE strongly depends on the minimum distance
between the transmitted symbols, and the activity rate here
plays a secondary role. Hence, the gap between the multiuser
efficiencies with α = 1 and α < 1 for larger SNR is due to
the fact that the former constellation has twice the minimum
distance of the latter.

For the whole range of activity rates, i.e., α ∈ [0, 1], we
can derive lower and upper bounds illustrating analytically
the transition between the classical assumption (α = 1) and
the introduction of activity detection (α < 1) for large SNR.
Our calculations bring about a new analytical framework for
large-system analysis, as we will see in next section. The most
general result is stated as follows:

Theorem 3.1: The MMSE of joint user identification and
data detection in a large system with an unknown number of
users has the following behavior, valid for large values of the
product ηγ:

κ1(γ, η, α) ≤ MMSE(γ, η, α) ≤ κ2(γ, η, α) (12)

where κ1(γ, η, α) , 2
√

α(1−α)
πηγ e−ηγ/8 and κ2(γ, η, α) ,

2αe−ηγ/2 +
√

πα(1−α)
ηγ e−ηγ/8.

Both bounds describe explicitly, in the high-SNR region, the
relationship among the MMSE, the users’ activity rate, and the
SNR. Furthermore, we can observe that, for sufficiently large
SNR, the behavior vs. α of the optimal detector is symmetric
with respect to α = 1/2, which corresponds to the maximum
uncertainty on the activity rate. Fig. 2 illustrates the bounds
and the aforementioned fact for SNR= 20 dB. The MMSE
essentially depends on the minimum distance between the
inactivity “symbol” {0} and the data symbols {−1, 1}, and
thus users’ identification prevails over data detection. Sum-
marizing, the dependence of the MMSE must be symmetrical
with respect to α = 1/2, since it reflects the impact of prior
knowledge on the user’s activity into the estimation.
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Figure 2. Comparing exact MMSE (straight line) with its upper (dashed
line) and lower bounds (dotted line) for SNR= 20 dB and α ∈ [0, 1].

IV. SYSTEM LOAD AND RELATED CONSIDERATIONS

Recall the definition of maximum system load β = K
N ,

where K is the maximum number of users accessing the mul-
tiuser channel. When the number of active users is unknown,
and there is a priori knowledge of the activity rate, the actual
system load is β′ = αβ. In this section, we focus on β and
study some of its properties. Notice that, given an activity rate,
results on the actual system load follow trivially.

A. Solutions of the large-system fixed-point equation

We characterize the behavior of the system load subject to
quality-of-service constraints. Doing this helps shedding light
into the nature of the solutions of the fixed-point equation (11).
In particular, there might be cases where (11) has multiple
solutions. These solutions correspond to those appearing in
any simple mathematical model of magnetism based on the
evaluation of the free energy with the fixed-point method [8].
In the case of a multiuser detection problem, the multiuser effi-
ciencies for the IO detector might vary significantly depending
on the value of the system load and SNR. More specifically,
as the SNR grows large, stable solutions may switch between
two regions: one where the multiuser efficiency tends to 1, and
thus, the single-user performance is approached, and another
one, where the multiuser efficiency tends to 0. Following
previous literature [6], we shall call the former solutions good
and the latter bad. Thus, in case of multiplicity, the solution
that minimizes the free-energy might belong to the good or
to the bad region. When the solution is unique, the multiuser
efficiency is trivially a globally stable solution in any of these
two regions.

B. System load and the space of fixed-point solutions

Even in the case of good solutions, the multiuser efficiency
can be greatly degraded by the joint effect of the activity
rate and the system load. In order to analyze (11) from a
different perspective and shed light into the interplay between
these parameters, we express the maximum system load as the
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following function, finding β in (8):

Υβ(γ, η, α) ,
(1− η)

ηγMMSE(γ, η, α)
(13)

It is easy to observe that, for small values of η, Υβ(γ, ., α)
grows to infinity, whereas in the high-η region, which is of
interest here, it decays to 0. Before analyzing the behavior
of (13), we introduce a few definitions that help describe the
boundaries between the regions with and without coexistence
(in the statistical-physics literature, these boundaries are called
spinodal lines [6]). We also define appropriately the regions
of potentially stable solutions as introduced before.

Definition 4.1: The critical system load β?(γ, α) is the
maximum load up to which a stable good solution of (11)
exists.

Definition 4.2: The transition system load β?(γ, α) is the
load at which a single good solution of (11), η? starts to coexist
with other solutions η′?.

Definition 4.3: The good-solution region corresponds to the
domain of (13) formed by the maximum η in every set of pre-
images of Υβ below the critical system load:

Rg =
{
η ∈ [0, 1], η = max{Υ−1

β (β)},∀β ∈ [0, β?]
}

(14)

Similarly, the bad-solution region corresponds to the domain
of (13) formed by the minimum η in every set of pre-images
of Υβ above the transition system load:

Rb =
{
η ∈ [0, 1], η = min{Υ−1

β (β)},∀β ∈ [β?,+∞]
}
(15)
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Figure 3. System load function in the multiuser efficiency domain for α =
0.5 and γ = 18dB.

Fig. 3 illustrates Υβ (for fixed SNR and activity rate) and
shows the regions defined by the aforementioned parameters.
It is important to remark that both system loads defined above
delimit the regions from which there is phase coexistence
(β? ≤ β ≤ β?) from the areas where there is one solution

(β > β? or β < β?). Additionally, Fig. 3 illustrates the set of
solutions that satisfy conditions (14) and (15).

We are interested in describing the domains where good and
bad solutions of (11) can be found and show their relationship
with the system parameters (β, γ and α). In case of multiple
solutions the multiuser detector is not guaranteed to achieve
the good solution [6]. Hence, our last goal is to give an
explicit analytical representation of the single-good-solution
(also called computationally feasible) region.

We focus here only on α ∈ (0, 1). In order to analyze the
conditions on the system load, SNR, and activity rate, under
which we can find a good solution, we use the asymptotic
results on the MMSE, yielding lower and upper bounds
L(., ., .) ≤ Υβ(γ, η, α) ≤ U(., ., .), where L(γ, η, α) ,

(1−η)√
πηγα(1−α)

eηγ/8 and U(γ, η, α) , (1−η)
2

√
π

ηγα(1−α)e
ηγ/8.

Although not exact for low SNR, the dependence on η of the
upper and lower bound provides a good approximation for the
dependence of Υβ(., ., .) for large SNR and given α. Hence,
using U(., ., .) and L(., ., .), we obtain necessary and sufficient
conditions that determine the regions of stable solutions and
provide analytical expressions for the transition and critical
system loads. The main result for α ∈ (0, 1) follows:

Theorem 4.4: Given the range of activity rates α ∈ (0, 1),
a necessary condition for phase coexistence is

γ ≥ 4(3 + 2
√

2), (γ ≥ 13.67 dB) (16)

Moreover, for large enough γ, the condition is met and the
transition system load is bounded by

L(γ, ηm, α) < β?(γ, α) < U(γ, ηm, α) (17)

while the critical system load is bounded by

L(γ, ηM , α) < β?(γ, α) < U(γ, ηM , α) (18)

and ηm, ηM are given by ηm , (γ/2− 2− 4∆(γ))/γ, ηM ,
(γ/2−2+4∆(γ))/γ, where ∆(γ) =

√
(γ/8)2 − 3γ/8 + 1/4.

Hence, the bad-solution region is given by Rb = [0, ηm],
whereas the good-solution region is Rg = [ηM , 1]. Similarly,
the (computationally feasible) subregions of single bad solu-
tions, that we shall denote Rbc = [0, ηbc] ⊂ Rb, and single
good solutions, denoted by Rgc = [ηgc, 1] ⊂ Rg , satisfy the
following bounds:

ηbc = min{Υ−1
β (β?)} > η?bc

ηgc = max{Υ−1
β (β?)} < η?gc

where η?bc , min{U−1(β?)}, and η?gc , max{L−1(β?)} are
obtained from the bounds.

The above result provides the general boundaries of the
space of solutions of our problem. It is important to note that
ηm and ηM are very good approximations for high SNR of the
positions of the minimum and maximum observed in Fig. 3,
which determine transition and critical system loads. Similarly,
η∗bc and η∗gc are tight bounds of the boundaries of the single-
solution regions as U(., ., .) and L(., ., ) are of Υβ(., ., .).
Remark also that the activity rate affects the transition and
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critical system load, and the subregions Rgc and Rbc in the
same symmetrical manner as it does the MMSE (i.e., the worst
case here also corresponds to α = 0.5) but has no impact on
the whole regions of good Rg and bad solutions Rb, that are
only reduced in size by increasing SNR. In particular, these
regions are characterized, in the limit of high SNR, as follows:

Corollary 4.5: In the limit of high SNR, Rg → {1}, and
Rb → {0} and consequently Rgc → {1}, and Rbc → {0} .

Note that, given a system load β with β < β?, for
sufficiently large SNR the unique true (large-system) solution
is η = 1, which corroborates the main result in [12]. Moreover,
the description of the computationally feasible solutions by an-
alytical means allows the derivation of a sufficient condition on
the system load to guarantee a given (single-good) multiuser
efficiency in practical implementations. More specifically, we
use the aforementioned lower bound on Υ to state that any
system load below L(., ., .) guarantees that the requirement is
met.

Corollary 4.6: The maximum system load, βα,η , for a
given activity rate and multiuser efficiency requirement in the
computationally feasible region, η = 1− ε (0 < ε� 1) such
that η ≥ η?gc, is lower-bounded in the high-SNR region by:

βα,η >
ε√

πηγα(1− α)
e(1−ε)γ/8 (19)

In Fig. 4 we show the transition and the critical system
load as function of the SNR in a (γ, β) space. We also use
the asymptotic expansion to derive upper and lower bounds,
respectively. The curves plotted are the spinodal lines, and
mark the boundary between the regions with and without
solution coexistence. The β? (lower branch) separates the
region where the bad solution disappears, whereas β? (upper
branch) contains the bifurcation points at which the good solu-
tion disappears. The intersection point between both branches
corresponds to the SNR threshold (16), which provides the
necessary condition for solution coexistence.
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Figure 4. Upper and lower bounds on the numerical spinodal lines (thicker
line) for α = 0.5.

V. CONCLUSIONS

We have analyzed the worst-case performance of a MAP
multiuser detector for CDMA, where the evolution of active
users accessing the network degenerates into an independent
process and activity and data must be jointly estimated at
each symbol time. By applying the large-system fixed-point
equation to a ternary and activity-dependent constellation, we
derive explicit bounds on the MMSE for high SNR. This
leads to a novel high-SNR analysis of the space of multiuser
efficiency solutions where the critical system loads as well
as the feasible-solution regions can be well approximated
by analytical means. Our results show that for the ternary
constellation assumed in the model, the boundaries of the
space of solutions and more remarkably, the computationally
feasible subregions, do depend on the activity rate, whereas the
general regions are only affected by the SNR. In applications
with high quality-of-service demands, we are interested in a
critical system load as large as possible, keeping the optimal
detector in the good subregion of computationally feasible
multiuser efficiencies, so that a wider range of potential users
can access successfully the channel with a given rate. The
above analysis can be easily extended to more general non-
uniform and parameter-dependent constellations.
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