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Abstract— We study the minimum mean square error (MMSE)
and the multiuser efficiency η of large dynamic multiple access
communication systems in which optimal multiuser detection is
performed at the receiver as the number and the identities of
active users is allowed to change at each transmission time. The
system dynamics are ruled by a Markov model describing the
evolution of the channel occupancy and a large-system analysis is
performed when the number of observations grow large. Starting
on the equivalent scalar channel and the fixed-point equation
tying multiuser efficiency and MMSE, we extend it to the case
of a dynamic channel, and derive lower and upper bounds for
the MMSE (and, thus, for η as well) holding true in the limit
of large signal–to–noise ratios and increasingly large observation
time T .

I. INTRODUCTION

In mobile multiple access communications, the number of

active users, their location and other channel state parameters

are variable with time. The estimate of these parameters

has several applications to communication systems, e.g., user

localization in wireless networks, neighbor discovery in ad hoc

networks, and power-control strategy optimizations.

The classical approach to multiuser detection is based on

the assumption that the number of active users is constant

and known at the receiver, and corresponds to the maximum

number of users entitled to access the system. However, this

model is quite pessimistic in a dynamic environment where

there is a considerable number of users that may remain

inactive at any given time: for this reason, in [1] a more

realistic framework has been outlined and a new class of

detectors has been introduced. In particular, the problem of

jointly estimating the number, the identities and the data of

active users has been considered, while [2] assumes that also

a number of continuous channel parameters are unknown at

the receiver end.

The object of interest here is the large-system analysis

of code division multiple access (CDMA) systems according

to the dynamic environment given in [1]. Thus, this paper

is aimed at analyzing the performance of a CDMA system

in terms of multiuser efficiency when its natural dimensions

(number of users, K, and spreading gain, N ) tend to infinity

keeping fixed their ratio (β = K/N ). The analysis will be

based on recent tools developed from statistical physics. Of

particular interest is the large-system equivalent single-user

channel that is proved in [3] for a randomly spread CDMA

system using the replica method analysis. Previous results on

this topic are contained in [4], where the replica method has

been applied to the static channel model described in [1] and

the large system performance for joint data detection and user

identification is given for a single instant time. The results are

an extension of those corresponding to known users and allow

evaluating the degradation due to the prior uncertainty as to

the users’ activity.

In this paper we address the large system analysis of a

multiuser detector as identities of the active user is allowed

to vary with time according to a known dynamic model.

Minimum mean square error (MMSE) and multiuser efficiency

are derived in this new scenario and an asymptotic analysis

(as the observation time becomes increasingly large) is given,

along with bounds on the MMSE and η. The rest of the

paper is organized as follows. Next section contains the system

model, and in particular the scalar channel model applicable

in the large system limit. Section III presents the asymptotic

(i.e., for large signal-to-noise ratio and large observation time)

analysis, while Section IV is devoted to the validation of the

analytical results through numerical simulations. Concluding

remarks form the object of Section V.

II. SYSTEM MODEL

Consider a synchronous BPSK-CDMA system with spread-

ing factor N and denote K < N the maximum number of

active users [3]. The signature of the k−th user is modeled

as a binary random sequence, S(k) say, whereby the signal

received at epoch t is

Yt = SXt + Nt, t = 1, . . . , T. (1)

In (1) S = [
√

ρ1S(1), . . . ,
√

ρkS(K)] is the channel “state”

matrix, ρk is the k-th user instantaneous signal–to–noise ratio

(SNR), while Xt = [X(1)
t , . . . , X

(K)
t ]T is a vector of ternary
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random variables (the ”input” symbols), defined as:

X
(k)
t =

{
0, if user k is idle,

b
(k)
t ∈ {−1, +1}, if user k is active.

(2)

where b
(k)
t represents the bit transmitted at epoch t. As to

N, it represents the additive white Gaussian noise, i.e. N ∼
N (0, I).

The evolution with time of the vector Xt is ruled by a

Markov model similar to that outlined in [1]. In particular,

denoting with μ the probability that a given user, active at time

t− 1, survives into epoch t, and with α the probability that a

user, idle at epoch t− 1, becomes active at epoch t, the basic

assumptions are that users may survive or die independent

of each other and that the bits emitted by a given user in

consecutive time epochs are independent (i.e., the sources are

memoryless). Under these conditions, the sequence X1:T =
{Xt}T

t=1 is a Markov chain whose state space has cardinality

3K . Thus the transition density of {Xt}t∈N factorizes as the

product of the transition densities of {X(k)
t }t∈N, where each

{X(k)
t }t∈N is a stationary and homogeneous Markov chain

with state space S = {−1, 0, 1} and transition probability

matrix

[
a(i, j)

]
i,j∈S =

⎛⎝ μ/2 1− μ μ/2
α/2 1− α α/2
μ/2 1− μ μ/2

⎞⎠ .

Given the above ingredients, our goal here is to study, in

the said dynamic environment, the multiuser efficiency of a

CDMA in the large system limit, i.e. as both the number of

users K and the spreading factor N tends to infinity while

their ratio β remains fixed and positive. Specifically, we are

interested in studying η and MMSE when joint user activity

detection and bit estimation is performed. To this end, we

apply the decoupling principle to a CDMA system where all

of the K admissible users are assumed to be transmitting

at any epoch t the ternary symbols defined in (2), studying

the equivalent (in the large system limit) single-user scalar

channel, i.e. a scalar Gaussian channel with the same input

distribution and SNR (ρ), and an inverse noise variance equal

to the multiuser efficiency (η) [3].

The equivalent single user scalar channel is described by

the following equation

Yt =
√

ρXt +
1√
η
Nt,

where, with a slight abuse of notation, we have dropped the

user apex. The inverse noise variance η, accounting for the

degradation of the channel, is interpreted as the multi-user

efficiency and can be found solving the fixed point equation

η−1 = 1 + βρK(ηρ), 1 (3)

where K is the MMSE (which, depends on the product ηρ).

The solution of (3) is in general found numerically and, in

1Notice that we have dropped the expectation sign that can be found in the
expression in [3] since no fading is considered in the present framework.

the event that it has more than one solution, η is chosen to

minimize the so-called “free-energy” (see [3] for details).

The estimate of the transmitted symbol at time T , X̂T say,

based upon the past observations Y1:T = {Yt}T
t=1 is chosen

to be the posterior mean, i.e. X̂T = E
[
XT |Y1:T

]
. We then

study the multiuser efficiency as the observation time T gets

large. As in [3], we can regard X̂T as a soft-output version

of the individually optimal detectorThe conditional density of

the observation at time t be

f(yt|xt) =
√

η

2π
e−

η
2 (yt−√ρxt)

2
, ∀ xt ∈ S.

whereby {Xt, Yt}t∈N is a hidden Markov process (HMP) and

the likelihood up to epoch T is

f(y1:T ) =
∑

x1∈S
· · ·
∑

xT∈S
π(x1)f(y1|x1)

T∏
t=2

a(xt−1, xt)f(yt|xt),

where π is the stationary distribution 1
1+α−μ

(
α
2 , 1− μ, α

2

)
.

The estimate X̂T is

X̂T = E
[
XT |Y1:T

]
=
∑
x∈S

xP
({XT = x}|Y1:T

)
=

= P
({XT = 1}|Y1:T

)− P
({XT = −1}|Y1:T

)
and the MMSE at epoch T is KT (ηρ) = E

[
(XT − X̂T )2

]
,

where the expectation is taken over the joint distribution of

{Xt, Yt}T
t=1. After some manipulations, we obtain:

KT (ηρ) = P
({XT = 1})+ P

({XT = −1})− E
[
X̂2

T

]
=

α

1 + α− μ
− E

[
X̂2

T

]
.

III. ASYMPTOTIC ANALYSIS AND BOUNDS

The goal of our analysis is to find an asymptotic expression

for the multiuser efficiency η. To this end, we first need to

prove that E
[
X̂2

T

]
admits a limit as T grows large, and then

determine its expression. As to the former point, notice that the

one-sided stationary process {Xt, Yt}t∈N can be extended to

a two-sided stationary process {Xt, Yt}t∈Z, whence we have:

E
[
X̂2

T

]
=E

[(
P
({XT = 1}|Y1:T

)−P
({XT =−1}|Y1:T

))2]
= E

[(
P
({X1 = 1}|Y−T+2:1

)−P
({X1 = −1}|Y−T+2:1

))2]
.

Since
(
P
({X1 = 1}|Y−T+2:1

)−P
({X1 = −1}|Y−T+2:1

))2

is bounded for every T ∈ N, dominated convergence gives

lim
T→+∞

E
[
X̂2

T

]
=

= E
[(

P
({X1 = 1}|Y−∞:1

)− P
({X1 = −1}|Y−∞:1

))2]
,

where, ∀ x ∈ S,

lim
T→+∞

P
({X1 = x}|Y−T+2:1

)
= P

({X1 = x}|Y−∞:1

)
exists almost surely form a martingale convergence theorem

by Lévy (see [5]).

Since determining a closed-form expression for KT (ηρ) as

T → ∞ in the general case is very challenging, we first
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analyze two special of the Markov chain {Xt}t∈N and then,

from this results, we derive a lower and upper bound for the

MMSE.

A. Special cases

Let us first re-castX̂T as:

X̂T =

=
f(YT |1)P({XT =1}|Y1:T−1)−f(YT |−1)P({XT =−1}|Y1:T−1)∑

x∈S f(YT |x) P({XT = x}|Y1:T−1)

=
f(YT |1)− f(YT | − 1)

f(YT |1) + 2 1−P({XT =±1}|Y1:T−1)
P({XT =±1}|Y1:T−1)

f(YT |0) + f(YT | − 1)

=
sinh(η

√
ρYT )

cosh(η
√

ρYT ) + 1−P({XT =±1}|Y1:T−1)
P({XT =±1}|Y1:T−1)

eηρ/2
,

where P({XT = ±1}|Y1:T−1) = 1− P({XT = 0}|Y1:T−1).
1) α = 0, μ = 1: This represents a static channel, i.e. the

user persists indefinitely in its state (active or not). Thus, the

stationary distribution is π =
(

λ
2 , 1− λ, λ

2

)
, for any λ ∈ [0, 1]

(λ represents the probability that the user is active), and the

density of Y1:T is

(1− λ)
T∏

t=1

f(yt|0) + λ

T∏
t=1

f(yt|1) + f(yt| − 1)
2

.

In this case {Yt|X1 = 0}t∈N and {Yt|X1 = ±1}t∈N are two

independent processes so that one has

1− P({XT = ±1}|Y1:T−1)
P({XT = ±1}|Y1:T−1)

=

=
1− λ

λ
·

T−1∏
t=1

f(Yt|0)(
f(Yt|1) + f(Yt| − 1)

)
/2

T→+∞−−−−−→
⎧⎨⎩+∞, a.s. if X1 = 0,

0, a.s. if X1 = ±1,

and then

E
[
(X̂T )2

]
=

= λ E
[
(X̂T )2|X1 = ±1

]
+ (1− λ) E

[
(X̂T )2|X1 = 0

]
T→+∞−−−−−→ λ E

[(
f(Y1|1)− f(Y1| − 1)
f(Y1|1) + f(Y1| − 1)

)2 ∣∣∣X1 = ±1

]
,

This implies, after some manipulations, that the limiting

expression for the MMSE is:

KT (ηρ) T→+∞−−−−−→ λ

(
1−

∫
R

tanh(ηρ− y
√

ηρ)
e−

y2

2√
2π

dy

)
, (4)

which is exactly λ times the canonical MMSE found in [3].

This expression allow us to say that, as the observation time

tends to infinity, all the uncertainty as to the user activity

can be removed: if the user is active, which happens with

probability λ, errors can be due to bit estimation only.

2) α = μ = λ: In this case π = (λ
2 , 1 − λ, λ

2 ) and the

density of YT is

fT (yT ) =
T∏

t=1

(
λ

2
f(yt| − 1) + (1− λ)f(yt|0) +

λ

2
f(yt|1)

)
,

i.e. the HMP degenerates into an independent process. We thus

have

1− P({XT = ±1}|Y1:T−1)
P({XT = ±1}|Y1:T−1)

=
1−P({XT = ±1})

P({XT = ±1}) =
1−λ

λ

and then, ∀ T ∈ N,

E
[
(X̂T )2

]
=E

⎡⎣( f(Y1|1)− f(Y1| − 1)
f(Y1|1) + 2 1−λ

λ f(Y1|0) + f(Y1| − 1)

)2
⎤⎦.

As to the MMSE, after some manipulations, we obtain

KT (ηρ) =

= λ

(
1−

∫
R

sinh(ηρ− y
√

ηρ)
cosh(ηρ− y

√
ηρ) + 1−λ

λ eηρ/2

e−
y2

2√
2π

dy

)
.

which corresponds to the MMSE of the “one-shot” estimation

of user activity and data found in [4]. A case of particular

interest is α = μ = 1/2, which, as will be seen later,

corresponds to the worst case MMSE for large values of ρ.

Observation 3.1: In general, the estimation of the state XT

based upon Y1:T corresponds to performing both user activity

detection and data estimation. Since the transmitted bits are

independent, past observations may only be helpful in the latter

task. The two extrema are the static case (α = 0, μ = 1),

where channel occupancy estimation is improved for larger T ,

and independent observation case (α = μ), where memoryless

processing is optimum. In general, as α approaches zero and μ
approaches 1 (which means that the user persists being idle or

active for long time) larger values of T result in larger gains.

B. Upper and lower bound

Given the form of the stationary distribution, we have that

P({X1 = ±1}) = α
1+α−μ . The best case would be clearly

the static case with initial distribution (λ
2 , 1− λ, λ

2 ) and λ =
α

1+α−μ since, when T → +∞, the uncertainty as to the user

activity is completely removed and data detection only need

to be performed. A lower bound for the MMSE, then, is that

in equation (4). Developing (4) we have

1−
∫

R

tanh(ηρ− y
√

ηρ)
e−y2/2

√
2π

dy =

=
∫

R

2e
√

ηρ(y−√ηρ)

e
√

ηρ(y−√ηρ) + e−
√

ηρ(y−√ηρ)

e−y2/2

√
2π

dy =

=2e−ηρ/2

∫
R

1
e
√

ηρy + e−
√

ηρy

e−y2/2

√
2π

dy =

=2
∫ 0

−∞

1
1 + e2y

√
ηρy

e−
(y−√ηρ)2

2√
2π

dy+

+ 2
∫ +∞

0

1
1 + e−2y

√
ηρy

e−
(y+

√
ηρ)2

2√
2π

dy =
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=2
+∞∑
k=0

(−1)k

⎛⎝∫ 0

−∞
e2k

√
ηρy e−

(y−√ηρ)2

2√
2π

dy+

+
∫ 0

−∞
e−2k

√
ηρy e−

(y+
√

ηρ)2

2√
2π

dy

⎞⎠ =

=4
+∞∑
k=0

(−1)ke
(2k+1)2ηρ

2 Q
(√

(2k + 1)2ηρ
)
≈

≈4e−ηρ/2

√
2πηρ

+∞∑
k=0

(−1)k

2k + 1
=
√

π

2ηρeηρ
.

Notice that in the above chain of equalities, no approximation

has been advocated except that in the last step, where the Q
function has been replaced with its asymptotic behavior for

large ρ. Thus all but the last equalities hold for any value of

ρ, and are consistent with those obtained in [6] for large ρ.

We thus obtain

KT (ηρ) ≥ λ

√
π

2ηρ
e−ηρ/2,

with equality if the channel is static.

As concerns the upper bound, let γ = P({XT = ±1}|
Y1:T−1). Then, the MMSE at epoch T conditioned upon the

past observations Y1:T−1 can be also written as

KT (ηρ|Y1:T−1) = γ −
∫

R

X̂2
(γ

2
f(y|1) + (1− γ)f(y|0)+

+
γ

2
f(y| − 1)

)
dy =

=
∫

R

γ f(y|)+f(y|−1)
2 (1− γ)f(y|0) + γ2f(y|1)f(y| − 1)

γ
2 f(y|1) + (1− γ)f(y|0) + γ

2 f(y| − 1)
dy,

(5)

so that KT (ηρ) = E[KT (ηρ|Y1:T−1)]. The second derivative

of KT (ηρ|Y1:T−1) with respect to γ is

−1
2

∫
R

f2(y|0)
(
f(y|1)− f(y| − 1)

)2(
γ
2 f(y|1) + (1− γ)f(y|0) + γ

2 f(y| − 1)
)dy,

showing that the MMSE is a concave function of γ and attains

an absolute maximum for γ ∈ [0, 1]. Furthermore, equation (5)

can be also written as

KT (ηρ|Y1:T−1) =

=
∫

R

γ
2 (1− γ)f(y|0) + γ2

2 f(y| − 1)
γ
2 f(y|1) + (1− γ)f(y|0) + γ

2 f(y| − 1)
f(y|1)dy+

+
∫

R

γ
2 (1− γ)f(y|0) + γ2

2 f(y| − 1)
γ
2 f(y|1) + (1− γ)f(y|0) + γ

2 f(y| − 1)
f(y| − 1)dy.

Divide now the interval [0, 1] into two sub-intervals, [0, 3/4]
and [3/4, 1]. For large ρ and γ ∈ [0, 3/4], we have

KT (ηρ|Y1:T−1) ≈
∫

R

γ
2 f(y|1)(1− γ)f(y|0)

γ
2 f(y|1) + (1− γ)f(y|0)

dy+

+
∫

R

γ
2 f(y| − 1)(1− γ)f(y|0)

(1− γ)f(y|0) + γ
2 f(y| − 1)

dy =

= 2
∫

R

γ
2 f(y|1)(1− γ)f(y|0)

γ
2 f(y|1) + (1− γ)f(y|0)

dy =

= 2
∫

R

γ(1− γ)e
√

ηρ
(

y−
√

ηρ

2 − ln 2√
ηρ

)

γe
√

ηρ
(

y−
√

ηρ

2 − ln 2√
ηρ

)
+ (1− γ)

e−y2/2

√
2π

dy =

= 2
∫

R

γ(1− γ)e
√

ηρ

2

(
y−

√
ηρ

2 − ln 2√
ηρ

)
e−y2/2√

2π

γe
√

ηρ

2 (y−
√

ηρ

2 − ln 2√
ηρ )+(1−γ)e−

√
ηρ

2 (y−
√

ηρ

2 − ln 2√
ηρ )

dy =

= 2
∫

R

γ(1− γ)e
√

ηρ

2 y

γe
√

ηρ

2 y + (1− γ)e−
√

ηρ

2 y

e
−
(

y+
√

ηρ

2 + ln 2√
ηρ

)2
/2

√
2π

dy ≈

≈ 2
∫

R

γ(1− γ)e
√

ηρ

2 y

γe
√

ηρ

2 y + (1− γ)e−
√

ηρ

2 y

e
−
(

y+
√

ηρ

2

)2
/2

√
2π

dy =

= 2
∫

R

γf
(
y| 12

)
(1− γ)f

(
y| − 1

2

)
γf

(
y| 12

)
+ (1− γ)f

(
y| − 1

2

)dy,

Notice that the above approximation for large ρ is still concave

in γ as its second derivative is

−2
∫

R

(
f
(
y| 12

)
f
(
y| − 1

2

))2(
γf

(
y| 12

)
+ (1− γ)f

(
y| − 1

2

))3 dy,

Since KT (ηρ|Y1:T−1) is itself concave, its symmetry for

large ρ implies that the maximum cannot be attained for

γ ∈ [3/4, 1], whereby, for large ρ, the MMSE is maximum

at γ = 1/2 and we have

KT (ηρ|Y1:T−1) ≤
∫

R

e
√

ηρ

2 y

e
√

ηρ

2 y + e−
√

ηρ

2 y

e
−
(

y+
√

ηρ

2

)2
/2

√
2π

dy =

=
1
2

∫
R

2e
√

ηρ
4 (y−

√
ηρ
4 )

e
√

ηρ
4 (y−

√
ηρ
4 ) + e−

√
ηρ
4 (y−

√
ηρ
4 )

e−y2/2

√
2π

dy,

This is exactly the same expression (with ρ/4 instead of ρ)

derived for the lower bound and, then, KT (ηρ|Y1:T−1) ≤√
π

2ηρe−ηρ/4, for any Y1:T−1, i.e.

KT (ηρ) ≤
√

π

2ηρ
e−ηρ/8,

with equality if γ = P({XT = ±1}|Y1:T−1) = 1/2, i.e. if

α = μ = 1/2 (independent case). This can be interpreted as

follows. For large SNR’s data detection errors can be neglected

(since the distance between −1 and +1 is twice the distance

between 0 and ±1) and errors are primarily due to user activity

estimation (which amounts to discriminating between ±1 and

0): the worst case, then, is when ±1 and 0 are equiprobable.

Summing up, the smallest MMSE is obtained in the station-

ary case with initial distribution
(

λ
2 , 1− λ, λ

2

)
and, for large

SNR’s, the worst-case MMSE corresponds to the memoryless

channel α = μ = 1/2, i.e.:

λ

√
π

2ηρ
e−ηρ/2 ≤ KT (ηρ) ≤

√
π

2ηρ
e−ηρ/8.

The limiting values of η can be found though equation (3) and

the above limiting value of the MMSE.
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Fig. 1. Multiuser efficiency versus the SNR for different dynamics: static
channel, independent case and (α, μ) = (0.2, 0.8) case.

IV. NUMERICAL RESULTS

The analytical results found in the previous sections are

now validated through numerical Monte Carlo simulations. A

system load of β = 3/7 has been used and the observation

time T has been varied between 1 and 5, which, given the

small cardinality of the state space S, represents a good

approximation for the asymptotic analysis.

Figs. 1 shows the multiuser versus the SNR. In both figures

a typical dynamic case, (α, μ) = (0.2, 0.8), is compared with

the static case (α, μ) = (0, 1) and with the independent case

(α, μ) =
(

1
2 , 1

2

)
. As expected, in the static case, the per-

formances improves as the observation time increases while,

in the independent case, past observations do not increases

estimation accuracy. In the typical (0.2, 0.8) dynamic case we

can see that the performance improvement quickly saturate

with T , given the limited “memory” of the Markov chain

{Xt}. Figs. 2 and 3 focus on the independent case. The former

shows the multiuser efficiency versus the SNR for different

values of λ = μ = α while in the latter the MMSE is

reported versus λ for different SNR’s. It can be seen that, as the

SNR increases, the worst-case MMSE (the × markers) moves

towards λ = 1/2, this further confirming the correctness of

the upper bound derived in Section III-B.

V. CONCLUSIONS

This paper provides a large-system analysis of a dynamic

multiuser system where the activity of users may vary over

time following a Markovian model. Exploiting the large-

system equivalent scalar channel, the MMSE and the multiuser

efficiency has been found for the case of joint user activity

detection and bit estimation based on present and past ob-

servations. An asymptotic analysis, as the observation time

gets large, has been given, along with bounds on the MMSE

which have shown that the best-case MMSE is obtained in the

stationary case and, for high SNR’s, the worst-case MMSE for

the independent case with α = μ = 1/2.
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Fig. 2. Multiuser efficiency versus the SNR for the independent processes
and different values of μ = α = λ.
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