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Abstract—We present a study of large multiple-access com-
munication systems in which multiuser detection is performed
without knowledge of the number of interferers. When the
number of users increases without bound, optimum detectors
can be analyzed asymptotically. A statistical physics approach
based on spin glass theory provides analytical tools fo deal
with large systems in which the performance parameters to
be analyzed (error probabilities, etc) are self-averaging in the
limit. Of particular interest is the replica method that is used
as a key technique to compute the free-energy function and the
macroscopic parameters that determine the multiuser efficiency
and the bit error probability in the large system limit,

I. INTRODUCTION

In a multi-dimensional communications system many data
streams are transmitted from various users to others via a
common medium called a channel. In the case of a mobile
multiple access communications scenario the number of active
users, their location and other channel state parameters are
variable with time.

Most research on multiuser detection theory is based on
the assumption that the number of active users is constant
and known at the receiver, and corresponds to the maximum
number of users entitled to access the system. However, this
model is quite pessimistic in a dynamic environment where
there is a considerable number of users that remain inactive at
any given time, and the assumption that the number of users
is larger than the real leads to a performance loss for several
families of detectors.

These dynamic conditions can be generalized to an en-
vironment where not only the number and the transmitted
data, but also some continuous parameters of the active users
arc unknown at the receiver. Hence, we need to lay the
foundations of multiuser detection theory for this scenario.
For this purpose, two channels will be considered: static and
dynamic channel. If there is an available dynamic model of
the transmission system we will refer to the dynamic channel,
otherwise, to the static channel.

This new perspective on multiuser communications requires
a new approach from mathematics that considers the random-
ness not only in the data detected but also in the sets of users
that are observed at any time. The underlying mathematical
tool is called Random Set Theory (RST) and it can be used to
derive new multiuser detectors (RST detectors) and improve
the bit error probability (BEP) performance [1, 2].
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A random set is a map from a sample space {2 to a family of
subsets of a given space S. In the model we present, the space
S is formed by the unknown data and parameters of the active
interferers. Thus the information carried by the interferers at
time ¢ can be modeled as a random set:

X, = {xV, . xy (D

whose elements (the parameters) are random vectors and k&
(the number of active interferers) itself is a random integer that
takes values in the interval [0, K —1], where K is the maximum
number of users that can access the channel. If everything
about the interferers is known except their number and identity,
then all random sets X; belong to the power set 2{1++&3} that
we will refer to as 2%. Additionally, if we want to detect the
(binary) data that the interferers transmit, X, takes values in
a set with 3% eclements, that we will denote as 3%, Hence,
the objective is to detect the number and identity of active
interferers as well as the data they carry, assuming that the
remaining parameters do not change during the tracking phase.

In a dynamic environment, the detection performance is
determined by the channel and the dynamic model. The
channel model is represented by the pdf f,(y:|X:) where y is
the singleton of the observed signal and f,(.) is the probability
density function of the additive noise. The dynamic model
of the random sets sequence {X;}¢2, is represented by the
function fx, x,(-|-) that describes the time evolution of data
and parameters of the system under a Markovian assumption
for the evolution of X;.

As an example of application of random sets to multiuser
detection we examine here Direct Spectrum Code Division
Multiple Access (DS-CDMA) systems where the received
signal at time £ is represented by:

yt:RAbt(Xt)+Zt, ZL,ZI,,T (2)

where:

e« X, is the random set of active users.

« R is the correlation matrix of the signature sequences.

s A is the diagonal matrix of the users’ signal amplitudes.

s The vector be(X;) has nonzero entries in the locations
corresponding to the active-user identities described by
Xy

o z; is the noise vector with Gaussian distribution expressed
as (0, (Nog/2)R) or N(0,0°R) with No/2 = o2 the
power spectral density of the received noise.



If we consider that example in the static channel, the a
posteriori probability (APP) of X;, given the whole received
sequence, is:

fXalyr, -, y7) 3)

Hence, a sequential maximum a posteriori probability (MAP)
estimator of users’ identities is:

A

X = X |y 4
arg max f(Xy[y1.r) ©)

In our analysis we will restrict ourselves to the case of the
static channel and we will study the user and the user-and-data
MAP detectors. In order to model both scenarios, suppose that
the probability of interferer x? to be active is «, independent
of ¢ and <. Hence, the probability of interferer set X, depends
only of on its cardinality |X;|. Assume also that each user
k transmits N antipodal binary information symbols (BPSK),
which are independent from time to time and across users.
Hence, the prior distributions in each detection case are:

xB) = aBl(1l—a)f-IBl
fx(B) 9~ NIBlo/Bl(1 — o)K~IBI

where the time subscripts are omitted for simplicity.

&)
(©)

A. Statistical Physics Approach

In recent years, the theory of communications systems for
multiple users have received important contributions from
other disciplines. One of the most relevant contributions has
come from statistical physics. Physicists have successfully
built the theory of thermodynamics to explain the evolution
of macroscopic values using a statistical description of the
molecules. Using the same perspective, communications sys-
tems for multiple users can be modeled as well by statistical
interactions between the signals belonging to different data
streams with the purpose to derive properties in their large-
system limit.

The relationship between communications and thermody-
namics systems can be particularized in the concept of free-
energy. In statistical physics, the free-energy F(X) (where X
is the state variable) relates the energy E(X) and the entropy
H(X) of a physical system in the following way:

F(X) = E(X) - TH(X) )

where T is the temperature of the system. At thermal equi-
librium the free-energy (7) is minimized, since the entropy
is maximized as time evolves following the second law of
thermodynamics. A key point here is that the free-energy
normalized to the dimension of the system is a self-averaging
quantity. Thus, the free-energy turns out to be the starting point
for calculating macroscopic propertics of a thermodynamic
systern.

The entropy plays a central role in information theory and
then the relation established in (7) implies that the free-energy
can be regarded from an information theoretic point of view.
Actually, the only condition required to use the free energy is
the existence of macroscopic variables, microscopic random
variables and an energy function. In fact, for communications
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systems in practice the condition is that their size grows above
all bounds since some (microscopic) user random variables
(multiuser efficiency, bit error probability, etc..) are assumed
to self-average in the large-system limit yielding macroscopic
variables. In addition, the energy function can be interpreted
as the metric of a detector in multiuser communications. From
this perspective, any detector parameterized with a certain
metric can be analyzed with the tools of statistical mechanics
to derive results in the large system limit. Then, the calculation
of the free-energy can be associated to parameters of a
multiuser detection performance such as spectral efficiency,
channel capacity and bit error probability, in large systems.

At thermodynamic equilibrium, the free-energy can also be
expressed as F' = —T'log Z where Z = exp (—=|[x]|)
is called the partition function, ||.|| is the energy operator and
the temperature 7" > 0 is determined by the energy constraint.

In a communications system, the detector has to infer the
information-bearing symbols given the received signal y and
knowledge about the channel state (parameterized by S) which
yields Z(y,S).

Thus, the free-energy of the thermodynamic system normal-
ized by the number of users is (7" = 1);

Fx =—1/Klog Z(y,S) ®

In order to calculate the free-energy we use the self-
averaging assumption, which states that the randomness of
(8) vanishes as K — 0. Hence, the free-energy per user con-
verges in probability to its expected value over the distribution
of the random variables y and S:

F=-lim E{-1/KlogZ} ©
K—o0

However, there is a practical problem in the applicability
of the statistical mechanics framework to the communications
large-system analysis. The analytical calculations required to
solve the equations arising from (9) may not be feasible.

The most commonly used tool to evaluate the free-energy
was first developed for the analysis of some particular mag-
netic materials called spin glasses and is known as the replica
method. Although lacking of strong mathematical basis in
some respects, it has been shown to be consistent with
engineering results from random matrix and free-probability
theory. However, the most interesting point is that it allows
us to make reasonable predictions in other engineering ap-
plications such as the dynamic multiuser detection described
above. In that case, the calculation of the free-energy is useful
to analyze RST detectors and to derive its BEP for a large
number of users.

II. REPLICA METHOD DEVELOPMENT AND PRESENTATION
OF MAIN RESULTS

We generalize the classical statistical approach to randomly
spread CDMA systems [3, 4, 5] according to the framework
provided in [2] in order to define more realistic and powerful
detectors based on MAP estimation.

For this purpose, we analyze the DS-CDMA system (2) with
the following assumptions:



¢« S=RA where S is an N x K matrix whose columns
are the spreading sequences of the users and N is the
spreading gain, or sequence length.
« For simplicity, we model the noise as z ~ N (0, o%I).
We also denote the asymptotic factor or system load as § =
K /N, where K is the maximum number of active users at any
given time.
Thus, the static DS-CDMA system is modeled as follows:

y=8b(X)+z (10)

Our approach is aimed at developing the free-energy func-
tion calculation (9) for (10) to obtain the macroscopic pa-
rameters that determine the bit error probability in the large
system limit. The replica method, which we use to calculate
the free-energy (F), consists of computing F as follows:

1
(Iggnooﬁlogla{my, S>}) (1)

According (o the statistical physics approach described
above, we present our main results in the following two
theorems:

Theorem 2.1: Given a randomly spread DS-CDMA com-
munication scheme with constant equal power per user, the
large-system multiuser efficiency 1 of a RST individually
optimum detector that performs MAP estimation of user
identities is the solution of the following fixed-point equation;

1
20~ F = vAN?
1 + /8 <FY |:O[ - f \/ga_:lia)e_-,,(ﬁy_%)dy])

that minimizes the free-energy:

195}
= lim —
F 1ma

n—0 O,

n— (12)

1 2 1 2
F=-E [/(¢log¢)dy] —3 log E—l—— <7710ge + log E)

n 20 n
13)

where « is the activity rate of users, 3 is the system load, ~ is
the signal to noise ratio (SNR) per user, & performs over all
random variables and ¢ = ¢(y|y,n, b(X)) is the large-system
equivalent single-user Gaussian channel [3].

Hence, the large-system bit error probability P, per user is

computed as P, = Q (/777), where Q(z) = [° %e_tzdt
Theorem 2.2: Given a randomly spread DS-CDMA com-
munication scheme with constant equal power per user, the
large-system multiuser efficiency 7 of a RST individually
optimum detector that performs MAP estimation of user

identities and their data is the solution of the following fixed-

’]7:

o1 = o sinhyy—y /7]
1+'8<FY |:O[ f\/ﬁe : acosh[n’y—ym]—k(l—a)e"%

point equation:
ngD
(1
that minimizes the free-energy function (13). Again, the large-
system bit error probability P, per user is computed as P, =
Q(ym).
Unlike other approaches [3, 4, 5], the fixed-point equations
(12) and (14) are derived according to the prior distributions
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of random sets given in (5) and (6) that consider the users’
activity in a static channel. Hence, under MAP estimation, the
detection requires the knowledge not only of the prior informa-
tion of the data, but also of the activity rate parameter «v. Then,
the fixed-point equations are determined by the minimum
Efoe) (6O Plmb(X),9)} 4 }
Esao (PUIAX),S)T Y [
The application of this expression for each prior distribution
leads to the results shown above.

mean square error [E. {a —f

III. NUMERICAL RESULTS

Here, we show the asymptotic performance curves of a
individually optimum RST detector that knows the user’s
activity rate «. In this context, we provide the large-system
performance of this detector in two different types of random
set estimation: user identification, where the a priori distri-
bution of the random set is given by (5) and data detection,
where it is given by (6).

Fig. 1 plots the large-system multiuser efficiency perfor-
mance for MAP user identification based on the knowledge of
« alone. The values of the multiuser efficiency are obtained
numerically through the resolution of the fixed-point equation
(13) for a system load # = 1. Fig. 2 plots the corresponding
user bit error probability in a trained acquisition phase.

Fig. 3 plots the multiuser efficiency performance for a MAP
detector of users and data based on the knowledge of «
alone and assuming BPSK modulation. In this case, the values
of the multiuser efficiency are obtained numerically through
the resolution of the fixed-point equation (14) for a system
load § = 3/7. Fig. 4 plots the corresponding user bit error
probability for some values of a. The values obtained in the
asymptotic regime match those obtained by simulation in [2],
showing that our asymptotic analysis yields results that are
also valid for a finite (and fairly small) number of users.

It is interesting to observe the performance of the multiuser
efficiency for different values of a.. All curves achieve a mini-
mum value at a different SNR value. For instance, in the user-
and-data detector the minimum is obtained for a value near
« = 0.5, which corresponds approximately to the maximum
uncertainty under MAP estimation. This value also represents
a threshold in the curve behavior of the multiuser efficiency.
For values of « approaching 1 the shape of the curve tends to
that of o« = 1, a fact also observed in [5]. For smaller values
of «, the minimum increases its value and approaches the
analytical limit 1 when o« — 0. The existence of the minimum
is confirmed by results previously reported in the literature
[7, 6]. Firstly, the definition of multiuser efficiency [7] entails
that at very low SNR, it tends to 1. Additionally, as proved in
[6] the multiuser efficiency for binary antipodal transmission
converges to 1 as SNR approaches infinity.

IV. CONCLUSIONS

We have developed a replica-method analysis from statis-
tical physics for the class of multiuser RST detectors in an
static environment. We have derived the large system multiuser
efficiency and the user bit-error probability for the cases of
user identification and data detection. The analytical results
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Figure 1. Large system multiuser efficiency of user identification under MAP
detection with prior knowledge of o and B=1.
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Figure 2, Large-system user bit error probability of user identification under
MAP detection with prior knowledge of o and B=1.

match the simulations carried out in the seminal paper on
RST detectors [2]. Moreover, if our results are specialized to
the common assumption on the number of users (o = 1}, they
coincide with previous results reported in the literature. For the
purpose of the free-energy computation, we have provided a
more general framework for time-varying multiuser schemes
based on prior distributions of random sets. This can have
additional interest when analyzing the dynamic channel given
in [2] in the large-system limit.
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