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Abstract- Random linear network coding is a particularly
decentralized approach to the multicast problem. Use of random
network codes introduces a non-zero probability however that
some sinks will not be able to successfully decode the required
sources. One of the main theoretical motivations for random
network codes stems from the lower bound on the probability
of successful decoding reported by Ho et. al. (2003). This result
demonstrates that all sinks in a linearly solvable network can
successfully decode all sources provided that the random code
field size is large enough. This paper develops a new bound on
the probability of successful decoding.

I. INTRODUCTION

It has been recently proved that network layer coding can
increase throughput, particularly for multicast scenarios [1].
It is also known that linear network codes [2] can achieve
max-flow upper bounds on the throughput in a single source
multicast network. The algebraic approach of [3] is particularly
useful in the design and analysis of linear network codes, and
we adopt the notation and terminology of that paper.
Random networks codes [4], [5] are linear network codes

in which the encoding coefficients are chosen randomly from
a finite field. The sink nodes can decode correctly if and
only if the overall transfer matrix from the sources to each
sink is invertible. One of the main theoretical results for
random network codes consists of the following lower bound
on the probability of successful decoding [4], assuming that
the underlying network is linearly solvable over EFq (i.e. there
exists a linear code which satisfies the multicast requirements).
For a network code in which some of the code coefficients are
chosen independently and uniformly from a finite field with
cardinality q, the probability that all d receivers can decode
the source processes is at least

(I1- > (1)q
where v is the maximum number of links receiving signals
with independent random coefficients in any set of links
constituting a flow solution from all sources to any receiver
[5].
A looser bound (subject to the same conditions as above)

which depends only on rT, the total number of edges receiving
signals with independent random coefficients is given by [4],
[6] ,
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Thus provided a linear solution over oq exists in the first
place, the probability of successful decoding can be made

as close to one as desired, by increasing the field size q.
The bounds (1) and (2) rely on the special structure of the
determinant polynomial of the transfer matrix of the network.

This paper develops the following new lower bound.

Theorem 1. Consider a network code in which r1 edges
receive signals with independent random coefficients chosen
independently and uniformly from a finite field with cardinality
q. If there is some choice of coefficients for these r1 edges
that results in a solution over Eq then the probability that all
receivers can decode the source processes is at least

(1 (3)
q

Our approach for the proof of this theorem is to identify
a critical sub-matrix of the Edmonds matrix whose non-
singularity is a necessary and sufficient condition for decoding
success. This critical matrix is different for each sink in
the network. The new bound results directly from a nesting
property of the critical matrices.

In the new bound, the field size q required to attain a
given probability of success depends only on the number
of edges with random coefficients, and not on the number
of sinks. The resulting d-fold reduction in the required q
could be significant. We emphasize that (3), like (1) applies
only when the underlying network is solvable over Eq. This
is a consequence of the conditions for applicability of the
Schwartz-Zippel inequality, which is used in the proof of both
bounds. Thus (3) does not imply the universal existence of
binary solutions for every network. The bounds (1), (2) and
(3) only provide lower bounds for a given q when the network
is solvable over Eq.
We further conjecture that for large random networks satis-

fying certain properties, the success probability behaves as

Ef(

i=l

1

qi) (4)

where E is the total number of links in the network.
The paper is organized as follows: Section II presents our

model and introduces some algebraic notation. Section III
develops the new bound (3), while Section V discusses random
graphs, leading to the conjecture (4).

II. NETWORK CODING MODEL

We adopt the model from [3]. The network is represented
by a directed acyclic graph 9 = (V, 8) with V = V nodes
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and E = 1S6 edges. There are r independent, discrete source
processes with messages belonging to Fq, and d > 1 receivers.
Each receiver node has L > r incoming edges. The multicast
requirement is that each receiver node can decode every source
message from the signals on its incident edges.

Each edge £e S is incident to node v C V if v = head(e),
or is an outgoing edge if v = tail(l). The in-degree of a node v
is di,, (v) and the out-degree is d01ut (v). The time unit is chosen
such that the capacity of each link is one bit per unit time
and edges with larger capacity are modeled as parallel edges.
Without loss of generality, it can be assumed that each source
is associated with a source node s, C V with di,, (s,) = 0 and
dout (so) = 1, a = 1, 2, ... , r . Similarly, each sink node to
has di,, (to) = r and dout (t) = 0, 3 = 1, 2, . . . , d (it is always
possible to obtain such a graph by introducing auxiliary nodes
and edges). It will further be assumed that edges are labeled
ancestrally.
A scalar linear network code for G is an assignment of

linear encoding functions fv Fdi.n(v) IFdout(v) to each node
v e V. Such codes are sufficient for the multicast problem
on acyclic delay networks. Following [3], define the encoding
matrix FC EIExE where Fij is the coefficient applied to the
symbol incoming on edge i e S for contribution to outgoing
edge j SE. According to the assumption of ancestral ordering,
F is strictly upper triangular. Similarly, the source matrix A C
IF,,XE maps messages onto outgoing source edges and the sink
matrix Bo C IF,xE maps incoming sink edges onto the sinks
to C V,/3= 1,2,..., d.

Let x e IF'Xr be a row vector representing the source
messages. Then the received vector of symbols yo e IF'Xr
at sink 3 = 1, 2,. .., d is given by

yO = scMO
where

M =A(I -F)-1B .

Each sink can decode all sources if and only if det(A(I-
F)-1BT) :t 0 for every 3 = 1, 2,..., d, or equivalently if
the Edmonds matrix

Z A 0ZO = LI-F BT3
is non-singular.

Considering the entries of A, F and Bo as variables,
the Leibniz determinant formula provides a way of writing
det Za as a multivariate polynomial P3 in the aij, fij, bij.
Furthermore, this multivariate polynomial has degree at most
v but is linear in each variable individually. Therefore the
product

p Po (5)

has degree dv, with each variable of degree d or less.
The lower bound (1) results from a modified Schwartz-

Zippel bound, which takes into account the individual variable
degree constraint of Po [5, Lemma 1]. We reproduce this
lemma for reference.

Lemma 1. Let P be a multivariate polynomial of degree dv,
with the exponent of any individual variable at most d. Let
each variable be chosen uniformly from Fq. Then if P is not
identically zero,

Pr (P 40) > I _i) (6)

We make two remarks on this approach. First, application
of Lemma 1 to P as defined in (5) implies an independence of
the events PO1 = 0 and Po2 = 0. Depending on the structure
of the network, these events may be strongly dependent. For
example, consider P1 = P2 = = Pd, meaning all sinks
have identical incoming signals (B1 = B2 = = Bd). Then
Lemma 1 yields a lower bound (1 -d/q)1, rather than (1-
l/q)1. Obviously this is an extreme example, yet it illustrates
the point that (1) may be loose.

Secondly, the modified Schwartz-Zippel bound itself can be
very loose, as the following example shows. Let H e IF"'
with each entry hij chosen independently with a uniform
distribution on Fq. Then it is well known that

m

Pr (det H 0O) = wm(q) = q(I q-i)
i=l

In contrast, Lemma 1 gives the lower bound

Pr(detH #0O) > (1 -q_ )m

(7)

(8)
which also could be obtained from (7) by lower bounding each
term in the product by the minimum term (1 q-1).
We emphasize that (6) applies only when P is not identi-

cally zero for every choice of variables (e.g. all coefficients
are zero). This precludes application of (6) to non-solvable
networks, i.e. networks where every choice of F makes Z3
singular and hence P = 0.

In Section III we partially address the dependency between
the Po, while in Section V we consider large random networks,
where we also discuss the extent to which (7) improves (8).

III. THE NEW BOUND

According to our assumption regarding sources and sinks,
and the ancestral ordering of edges, we can further assume
without loss of generality that

A = [Irxr °rx(E-r)]
B3 = [Orxk3 irxr Orx(E-r-k,3)] 3 = 1,2,...,d

where k, > r and k3 > r + k3 1, /3 > 1. This means
that the sources inject messages into the network via edges
1, 2, ... , r and that each sink observes signals on r consecu-
tively numbered edges. No sink shares edges with any other
sink or source. See Figure 1 for an example of how to arrive
at this formulation.
Then the Edmonds matrix for sink /3 has the following

structure:

ir
U1

Za = 0
0

L0

0
Wi1
U2
0
0

0

W12
W21
U3
0

0

W13
W22
W31
U4

0
0
0
Ir
0

(9)
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where the Ui are square, upper triangular with diagonal
elements all equal to 1. The matrices Ui and U3 are r x r, U2
is (k -2r) x (k -2r) and U4 is (E-r -k) x (E- r -k).

Definition 1. The critical matrix for sink d3 is the following
(k -r) x (k -r) principal sub-matrix of Z8,

C (Wll W12 (10)

Lemma 2. The determinant of the Edmonds matrix for sink
a3 has the same magnitude as the determinant of its critical
matrix.

det Z = det Co
Proof. Straightforward from either the Laplace expansion of
det Z3, or repeated application of the partitioned matrix de-
terminant formula. D

We can immediately apply Lemma 1 to det Co to bound
the probability for a given sink

Pr (detZo :t O) = Pr (detCo :t O) > I1 (I11)

where r1 is the number of columns in Co with variable terms,
i.e. the number of edges in the subset {r + 1, r +2. ... , k3}
receiving signals with random coefficients.

For the d receiver problem, we have the following very
useful property of the critical matrices, which is guaranteed
by their construction.

Lemma 3 (Nesting of critical matrices). Co1 is a principal
sub-matrix of C32 for /32 > 1

Hence each critical matrix Co has as nested principal sub-
matrices, all the critical matrices for sinks 1, 2, ... , /3 1.

Proof of main result (3). Let E3, 3 = 1, 2, . .., d be the event
that sink /3 can decode. By Lemma 2, Ed -## det Z3 7
0 # det Co =t0. Now the probability that all sinks can
decode is given by

d

Pr n
=1
E) = Pr(El) Pr(E2 El) ... Pr(E3 E1 ... E3B 1)

(12)
Now consider Pr(Em Ej,...,Em -) = Pr(detCm #t 0
detC,it 0,...,detCm.- , O0) for some 2 < m </3. By
Lemma 3, Cm can be partitioned

C (Cm-i U

for appropriate choices of U, V, W.
Conditioned on det Cm_- 1 0, we can use the partitioned

matrix determinant formula to write

det Cm = det(Cm I)det (W -VCm'1U) (13)

which (conditioned on det Cm- 1 0) is zero if and only if
det (W -VCm 1U) = O.

Let 9,m be the multivariate polynomial corresponding to
detCCm, and let (m be the multivariate polynomial corre-
sponding to det (W-VCm1 1U). Then from (13) degqm =

deg 5m- 1 + deg Jml-1 This relation also holds for the degree
of any individual variable. From the Leibniz formula and the
structure of the Edmonds matrix (as explained previously for
P), we also know that the individual degree of any variable
in q5m or ¢5mi- is zero or one. Hence

deg (Jm- 1 = degq5m -deg m-1,

and the degree of any individual variable in (m is at most
1. Collecting results so far and applying Lemma 1,

Pr(Em E, ...,Em ) =Pr(det(W -VCm1iU) #O)
=Pr(urm -iO)

< e(im-dego._
<

I
_-

Finally, substitution into (12) results in a telescoping sum for
the exponents, deg q1+deg 02-deg q1+deg 03-deg q52+.*.
leaving only

d

Pr nE3 J> I
3=1

1 degqd

qJ

This directly yields (3) via dv < r1 - deg Od
E.

Let

z(d, q) log(l

Tid <

D-

d/q)
llq) -

Then (3) is tighter than (1) whenever

rj < vz(d,q).

Furthermore, z(d, q) > d and

lim z(d,q) =oc
q-d

lim z(d,q) =d.

Roughly speaking, the new bound is tighter for networks with
E = O(vd) and sufficiently small q.

In some instances it may be useful to have a bound which
depends only on the total number of edges carrying signals
with random coefficients. Replacing v with r1 in (1) results in
(2) which is looser than (3), since

(1- dlq)'l < (1- llq)"l
Note that successful decoding at a particular sink 3 in

general depends on only part of Co. There can be a much
smaller sub-matrix that determines singularity, for example,
C3 might be block diagonal, with successful decoding of sink
3 depending only on one of the blocks (this case arises when
there are disjoint paths from the sources to each sink). Thus
C3 may be larger than strictly required for analysis of sink /3
alone, however defining the critical matrix this way yields the
nesting property that results in the new bound.
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IV. EXAMPLE: THE BUTTERFLY NETWORK

Figure 1 shows the well-known butterfly network, with
additional nodes and edges introduced in order to satisfy our
assumptions on sources and sinks. The source s has r = 2
messages, and the edge labels indicate the edge ordering.
Edges 1 and 2 carry the two messages from the source, while
edges 12 resp. 13 duplicate the signals on edges 5 resp. 10,
and edges 14 resp. 15 duplicate 8 resp. 11. Supposing that
all other edges carry random linear combinations of signals,
v= 7 and r = 9.

s

decoding success versus the field size q for the network of
Figure 1 (filled circles). This was achieved using monte-carlo
simulation, selecting each of the coefficients uniformly from
Fq. Results for the first ten prime fields are shown. Also shown
are the existing bounds (1), dashed line, (2), solid line, and the
new bound (3), dot-dashed line. In this case, the new bound
is considerably tighter.

p

1 F

0.8

0.6

12

tl t2

Fig. 1. The butterfly network.

Figure 2 shows the structure of the Edmonds matrix Z1,
and the nested critical matrices C1 and C2. To see how the
nesting arises, B2 has been placed alongside. For clarity, most
of the zeros have been omitted from each matrix. The solid
disks represent random entries of F.

Lot: A FZ0

Ill 0@ ~~~~I

12 0 1

I 1F

~1 0~
0 1

Fig. 2. Critical matrices for the butterfly network.

Figure 3 shows the empirically measured probability of

* S

.

0

_._.- (3)
- (1)

k(2)
0.4

0.2

5 10 15 20 25 q

Fig. 3. Success probability p versus field size q compared to bounds (1),
(2) and (3) for the butterfly network.

V. RANDOM GRAPHS

Successful decoding for a particular sink /3 depends on the
non-singularity of its critical matrix Co. To obtain (3) we used
Lemma 1 to bound the probability that this matrix is non-
singular. It is interesting to consider however circumstances
under which (7) might be applicable, providing an even tighter
bound.

There are two main obstacles to the application of (7) for
determination of the probability that det Co 0. Firstly,
(7) applies to "full" matrices, with each element chosen
independently and uniformly from Eq. In contrast, CO is of
the form (10), with all elements below the r-th diagonal equal
to zero (the strictly lower triangular part of U2). Secondly, the
non-zero elements in the upper portion (upper triangular part
of U2 and all of Wll, W12 and W21) of Co are determined by
the topology of the network itself. For a sparsely connected
network, the proportion of zeros in this part of the matrix will
greatly exceed l/q.
Assuming that the random network code coefficients are

chosen from the non-zero elements of Eq, the total number of
non-zero elements in F is

(-AE din (v) dout (v) < E2.
vCv

Let p = u7/E2 be the proportion of non-zero elements.
Ignoring the structure required by (10), generate a random
m x m matrix C(m) with elements identically distributed
according to

Pr (cij =f)
I

{ f =0
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It is a remarkable fact that provided p does not tend to zero
or one too quickly with Tn,

lim Pr (det C(m) #t 0) = wm (q).

See [7] for a discussion of this threshold effect. Conditioned
on the event that C(m) has no all-zero rows or columns (if it
did, the network flow would anyway be infeasible regardless
of choice of code), the requirement is

P > ( log m + log log m)

This result even holds for independent, but non-identically
distributed entries, as discussed by Cooper [7].
Now for sufficiently small p, c(m) can be permuted with

high probability into the form (10). This leads us to conjecture
that there exist conditions on a such that 7Fm(q) is the success
probability for a large, randomly generated network with
a given degree distribution. The remainder of this section
analyzes some properties of W,m (q), and demonstrates the
improvement that may be obtained compared to (8).

To guarantee a particular probability p using (8), the field
size q must satisfy

q > 1 1t 2+ 'm log + O().
1 pi/m 2

Hence the required field size increases linearly with the size
of the matrix.

Let 7w,,(q) =1imm,,, wmn(q) then

oo

7iFEX(q) = HI (1
i=l

q-i) = q1/24 (0 (q- 1/2))

where 01 is the Jacobi theta function [8, Equation 8.181.3]
and

ld'(q) , 1(z ,q) =
oz

tOTu2 ncating + 2leq-2f 2 bound,
i=O

Truncating the latter series gives the following lower bound,

3 1/3

J
TcEXD(q) > (I

This lower bound is compared to 7w0 for the first 20 primes
in Figure 4. For a given probability p in (7), the required field
size q for m -* oc satisfies

3
q > 1 -p3*

7iF0
1

0.8

0.6

0.4

0.2

10 20 30 40 50 60 70 q

Fig. 4. Lower bound (solid line) and wF,, (q) (dots).

VI. CONCLUDING REMARKS

Random network coding is a promising decentralized ap-
proach for multicast. One of the main implementation con-
siderations is the size of the finite field required to achieve a
specified probability that every sink can decode every source.
This paper presented a new bound on the success probability,
which in certain circumstances is tighter that the previous
bound. We also presented a heuristic argument that motivates
the investigation of tighter bounds for large random networks,
based on the distribution of rank of large random finite field
matrices.
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