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Global-Game Approach
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 / Equilibrium condition:

Suppose, θ is uncertain

Let θ ~ N (μ,τ2)

Players get private signals

xi = θ + εi,     εi ~N(0,σ2) 

ε1 and ε2 are independent

If is sufficiently small, there is 
a unique equilibrium (for given μ) 
with a threshold signal x*, s.t.
agent i invests if xi > x* and
does not invest, if xi < x*.

Carlsson/van Damme (1993)
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For σ2 → 0, the equilibrium 
converges to x* = 1/2

“global-game selection“

Equilibrium condition:

Suppose, θ is uncertain

Let θ ~ N (μ,τ2)

Players get private signals

xi = θ + εi,     εi ~N(0,σ2) 

ε1 and ε2 are independent

If is sufficiently small, there is 
a unique equilibrium (for given μ) 
with a threshold signal x*, s.t.
agent i invests if xi > x* and
does not invest, if xi < x*.

Carlsson/van Damme (1993)

In 2x2 games GGS=RDE
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Supermodular Game
Generalization:

Set of players I,   ordered finite action sets Ai = {0,1,2, … ,mi },  

Actions ,   action profile , 

lowest and highest action profiles 0 and m.

Complete information game Γ, specified by payoff functions gi : A →R.
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Supermodular Game
Generalization:

Set of players I,   ordered finite action sets Ai = {0,1,2, … ,mi },  

Actions ,   action profile , 

lowest and highest action profiles 0 and m.

Complete information game Γ, specified by payoff functions gi : A →R.

Game Γ is supermodular [actions are strategic complements], if 
for all i and for all             and

.Ii

ii AAa ii Aa 

ii aa ' :' ii aa  

 Best response functions are non-decreasing.

Supermodular games often have multiple equilibria.
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Global Game – general definition
A global game G is defined by

- payoff functions where R is called state parameter,
s.t.   (A1)    ui(·,θ) is a supermodular game,

(A2)           and    , s.t. the lowest and highest action are strictly             
dominant in the games given by              and 

(A3)    each ui satisfies weak state monotonicity: for all i and
ai < a‘i :

is weakly increasing in θ.
=> higher states make higher actions more appealing.
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Global Game – general definition
A global game G is defined by

- payoff functions where R is called state parameter,
s.t.   (A1)    ui(·,θ) is a supermodular game,

(A2)           and , s.t. the lowest and highest action are strictly
dominant in the games given by and

(A3)    each ui satisfies weak state monotonicity: for all i and
ai < a‘i :

is weakly increasing in θ.
=> higher states make higher actions more appealing.

- a distribution for the state parameter with continuous density ϕ, and

- a tuple of density functions fi with finite support for private signals ηi :

In the global game, players do not observe state θ. They receive private 
signals , where is a scale parameter.
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Global Game – general definition
A global game G is defined by

- payoff functions where R is called state parameter,
s.t.   (A1)    ui(·,θ) is a supermodular game,

(A2)           and , s.t. the lowest and highest action are strictly
dominant in the games given by and

(A3)    each ui satisfies weak state monotonicity: for all i and
ai < a‘i :

is weakly increasing in θ.
=> higher states make higher actions more appealing.

- a distribution for the state parameter with continuous density ϕ, and

- a tuple of density functions fi with finite support for private signals ηi :

In the global game, players do not observe state θ. They receive private 
signals , where is a scale parameter.
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Global Game selection
A global game G embeds a complete information game Γ at state θ*, if  

for all i, a.*),()( auag ii 

Theorem (analogue to Frankel, Morris, and Pauzner, JET 2003):
As the scale parameter ν goes to zero, the global game Gν(u,ϕ,f) has 
an essentially unique limit equilibrium.
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Global Game selection
A global game G embeds a complete information game Γ at state θ*, if  

for all i, a.*),()( auag ii 

Theorem (analogue to Frankel, Morris, and Pauzner, JET 2003):
As the scale parameter ν goes to zero, the global game Gν(u,ϕ,f) has 
an essentially unique limit equilibrium.

More precisely: denote a pure strategy of the GG by R s.t.
player i chooses action si(xi) when receiving signal xi .

There is a strategy s, s.t. for ν→0, any equilibrium sν(x) of Gν(·) converges 
to s(x) for all x except possibly at the finitely many discontinuities of s.

,: ii As 

If the global game‘s limit equilibrium strategy profile is continuous at θ*,
its value at that state determines a particular Nash equilibrium of the 
complete information game, called global-game selection (GGS).  
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Noise independence
Research Question: 

Under which conditions is the GGS independent from u, ϕ, and f ?

FMP (2003) show general independence from ϕ.

BDH (2013) show general independence from u.

=> One may use w/o.l.o.g.

Proof: For a sufficiently wide support of ϕ,  ui satisfies the global-game 
assumptions (A1) to (A3). Obviously, ui embeds g at θ*=0. 

In general, the GGS may depend on f.     

The GGS is called noise independent, if the GGS is independent of 
the particular densitiy function of private signals f.

.)(),( iii aagau  
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Noise independence in Small Games
For certain small games, the GGS is known to be noise independent:
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Decomposition Result
Definition: Consider a supermodular complete information game Γ with 

joint action set A. For action profiles a ≤ a‘, we define   

The restricted game Γ|[a,a‘] is given by restricting the joint action set of Γ.

Lemma (BDH, 2013): Consider a supermodular game Γ and a noise 
structure f. An action profile an is the unique GGS of Γ, if there is a 
sequence s.t. 
(i) a j is the unique GGS in Γ|[a j-1 ,a j ] for all j ≤ n, and
(ii) a j-1 is the unique GGS in Γ|[a j-1 ,a j ] for all j > n.

Corollary: If all the restricted games are noise independent, then Γ is also 
noise independent and an is the unique noise independent GGS of Γ. 

}.'~|~{]',[ aaaAaaa 

maaaa mn  ......0 10
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Decomposition Result
Procedure

• Check supermodularity of the game. 

• Decompose total game [0,m] into a sequence of smaller 
games: 

• Derive GGS of smaller games. 

• If all solutions point to the same strategy, this is a GGS of 
the large game.

• If, in addition, all small games are noise independent, the 
large game is also noise independent.

maaaa mn  ......0 10

maaaaaa  5432100
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Application 3: Asymmetric Players
Aquisition of a network good. Payoff depends on number of adopters.

V(i, n) number of adopters n

Player  i 1 2 3 4 5 6 7 8 9 10 11 12

A ‐4 ‐1 2 5 8 11 14 17 20 23 26 29

B ‐4 ‐1 2 5 8 11 14 17 20 23 26 29

C ‐4 ‐1 2 5 8 11 14 17 20 23 26 29

D ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11 14 17 20

E ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11 14 17 20

F ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11 14 17 20

G ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11

H ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11

I ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2 5 8 11

J ‐34 ‐31 ‐28 ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2

K ‐34 ‐31 ‐28 ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2

L ‐34 ‐31 ‐28 ‐25 ‐22 ‐19 ‐13 ‐10 ‐7 ‐4 ‐1 2
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Application 3: Asymmetric Players
Aquisition of a network good. There are M types of players with different 

payoff functions. 

= agent i‘s payoff from entry if n players enter in total. 

Agents with the same payoff function belong to the same type.

Order the types s.t. „i belongs to a lower type than j“ iff
for all n with at least one strict inequality.

Strategy combinations are partially ordered:           iff for all i.

Define a0 as the strategy combination, where e.b. stays out,

a1 as the strategy combination, where all players of type 1 enter, others
stay out,

ak as the strategy combination, where all players of types 1 to k enter and
players of higher types stay out. => aM = all players enter.

)(nvi

'aa 
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Application 3: Asymmetric Players
Look at restricted games with all strategies in [ak-1, ak] for k = 1, …, M. 

In each of these games, only players of type k have to decide. It is
described by payoffs on the block diagonal.

It is a symmetric binary-action game between players of the same type.

It is noise independent and the GGS is given by the best response of a 
type-k player to a uniform distribution on the number of entrants among 
the other players of his own type (with players of lower types entering, 
higher types staying out). 

 Expected payoff =  -1 

 ak-1 is selected  

 GGS: no player enters. 

V(i, n) number of adopters n

Player  i 1 2 3

A ‐4 ‐1 2

B ‐4 ‐1 2

C ‐4 ‐1 2
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Application 3: Asymmetric Players
Experiment: 4 sessions with 12 players each.
Subjects were playing 20 different games in random order without

feedback. Roles were randomly assigned to subjects for each game
independently.

In each game, subjects could choose between two options: 
For option A, they received 34 ECU. 
Payoffs for option B were presented by payoff tables. 

First, subjects had to answer comprehensive questions to make sure that
they understood how to read the payoff tables.

Alternative solutions:
Naive global game: best response to random number of entries
Levels of reasoning: Level 1: best response to each subject enetering
with probability of 50%, Level k = best response to Level k – 1.
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Application 3: Asymmetric Players
Game 1 Naive GGS predicts entry of A-C, Level k: A-C

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 30 33 36 36 36 36 36 36 36 36 36 36

B 30 33 36 36 36 36 36 36 36 36 36 36 9 / 12

C 30 33 36 36 36 36 36 36 36 36 36 36

D 0 0 0 30 33 36 36 36 36 36 36 36

E 0 0 0 30 33 36 36 36 36 36 36 36 1 / 12

F 0 0 0 30 33 36 36 36 36 36 36 36

G 0 0 0 0 0 0 30 33 36 36 36 36

H 0 0 0 0 0 0 30 33 36 36 36 36 0

I 0 0 0 0 0 0 30 33 36 36 36 36

J 0 0 0 0 0 0 0 0 0 30 33 36

K 0 0 0 0 0 0 0 0 0 30 33 36 0

L 0 0 0 0 0 0 0 0 0 30 33 36

10 / 48
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Application 3: Asymmetric Players
Game 2  (higher payoffs above diagonal compared to Game 1)

Naive GGS predicts entry of A-C, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 30 33 36 39 42 45 48 51 54 57 60 63

B 30 33 36 39 42 45 48 51 54 57 60 63 12 / 12

C 30 33 36 39 42 45 48 51 54 57 60 63

D 0 0 0 30 33 36 39 42 45 48 51 54

E 0 0 0 30 33 36 39 42 45 48 51 54 4 / 12

F 0 0 0 30 33 36 39 42 45 48 51 54

G 0 0 0 0 0 0 30 33 36 39 42 45

H 0 0 0 0 0 0 30 33 36 39 42 45 1 / 12

I 0 0 0 0 0 0 30 33 36 39 42 45

J 0 0 0 0 0 0 0 0 0 30 33 36

K 0 0 0 0 0 0 0 0 0 30 33 36 0

L 0 0 0 0 0 0 0 0 0 30 33 36

17 / 48
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Application 3: Asymmetric Players
Game 3  (higher payoffs below the diagonal compared to Game 1)

Naive GGS predicts entry of A-C, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 30 33 36 36 36 36 36 36 36 36 36 36

B 30 33 36 36 36 36 36 36 36 36 36 36 10 / 12

C 30 33 36 36 36 36 36 36 36 36 36 36

D 21 24 27 30 33 36 36 36 36 36 36 36

E 21 24 27 30 33 36 36 36 36 36 36 36 5 / 12

F 21 24 27 30 33 36 36 36 36 36 36 36

G 9 12 15 21 24 27 30 33 36 36 36 36

H 9 12 15 21 24 27 30 33 36 36 36 36 0

I 9 12 15 21 24 27 30 33 36 36 36 36

J 0 3 6 9 12 15 21 24 27 30 33 36

K 0 3 6 9 12 15 21 24 27 30 33 36 0

L 0 3 6 9 12 15 21 24 27 30 33 36

15 / 48
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Application 3: Asymmetric Players
Game 4  (higher payoffs above and below the diagonal cf. Game 1)

Naive GGS predicts entry of A-F, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 30 33 36 39 42 45 48 51 54 57 60 63

B 30 33 36 39 42 45 48 51 54 57 60 63 11 / 12

C 30 33 36 39 42 45 48 51 54 57 60 63

D 21 24 27 30 33 36 39 42 45 48 51 54

E 21 24 27 30 33 36 39 42 45 48 51 54 7 / 12

F 21 24 27 30 33 36 39 42 45 48 51 54

G 9 12 15 21 24 27 30 33 36 39 42 45

H 9 12 15 21 24 27 30 33 36 39 42 45 2 / 12

I 9 12 15 21 24 27 30 33 36 39 42 45

J 0 3 6 9 12 15 21 24 27 30 33 36

K 0 3 6 9 12 15 21 24 27 30 33 36 1 / 12

L 0 3 6 9 12 15 21 24 27 30 33 36

21 / 48
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Application 3: Asymmetric Players
Game 5  (Payoffs from Game 1 plus 3 ECU in all cells => GGS: entry)

Naive GGS predicts entry of A-C, Level k: A-F

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 33 36 39 39 39 39 39 39 39 39 39 39

B 33 36 39 39 39 39 39 39 39 39 39 39 12 / 12

C 33 36 39 39 39 39 39 39 39 39 39 39

D 3 3 3 33 36 39 39 39 39 39 39 39

E 3 3 3 33 36 39 39 39 39 39 39 39 9 / 12

F 3 3 3 33 36 39 39 39 39 39 39 39

G 3 3 3 3 3 3 33 36 39 39 39 39

H 3 3 3 3 3 3 33 36 39 39 39 39 2 / 12

I 3 3 3 3 3 3 33 36 39 39 39 39

J 3 3 3 3 3 3 3 3 3 33 36 39

K 3 3 3 3 3 3 3 3 3 33 36 39 3 / 12

L 3 3 3 3 3 3 3 3 3 33 36 39

26 / 48

V(i, n) number of adopters n observed
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Application 3: Asymmetric Players
Game 6 (Payoffs from Game 2 plus 3 ECU in all cells => GGS: entry)

Naive GGS predicts entry of A-F, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 33 36 39 42 45 48 51 54 57 60 63 66

B 33 36 39 42 45 48 51 54 57 60 63 66 12 / 12

C 33 36 39 42 45 48 51 54 57 60 63 66

D 3 3 3 33 36 39 42 45 48 51 54 57

E 3 3 3 33 36 39 42 45 48 51 54 57 7 / 12

F 3 3 3 33 36 39 42 45 48 51 54 57

G 3 3 3 3 3 3 33 36 39 42 45 48

H 3 3 3 3 3 3 33 36 39 42 45 48 1 / 12

I 3 3 3 3 3 3 33 36 39 42 45 48

J 3 3 3 3 3 3 3 3 3 33 36 39

K 3 3 3 3 3 3 3 3 3 33 36 39 2 / 12

L 3 3 3 3 3 3 3 3 3 33 36 39

22 / 48
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Application 3: Asymmetric Players
Game 7 (Payoffs from Game 3 plus 3 ECU in all cells => GGS: entry)

Naive GGS predicts entry of A-F, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 33 36 39 39 39 39 39 39 39 39 39 39

B 33 36 39 39 39 39 39 39 39 39 39 39 12 / 12

C 33 36 39 39 39 39 39 39 39 39 39 39

D 24 27 30 33 36 39 39 39 39 39 39 39

E 24 27 30 33 36 39 39 39 39 39 39 39 10 / 12

F 24 27 30 33 36 39 39 39 39 39 39 39

G 12 15 18 24 27 30 33 36 39 39 39 39

H 12 15 18 24 27 30 33 36 39 39 39 39 5 / 12

I 12 15 18 24 27 30 33 36 39 39 39 39

J 3 6 9 12 15 18 24 27 30 33 36 39

K 3 6 9 12 15 18 24 27 30 33 36 39 2 / 12

L 3 6 9 12 15 18 24 27 30 33 36 39

29 / 48
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Application 3: Asymmetric Players
Game 8 (Payoffs from Game 4 plus 3 ECU in all cells => GGS: entry)

Naive GGS predicts entry of A-F, Level k: A-F

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 33 36 39 42 45 48 51 54 57 60 63 66

B 33 36 39 42 45 48 51 54 57 60 63 66 11 / 12

C 33 36 39 42 45 48 51 54 57 60 63 66

D 24 27 30 33 36 39 42 45 48 51 54 57

E 24 27 30 33 36 39 42 45 48 51 54 57 11 / 12

F 24 27 30 33 36 39 42 45 48 51 54 57

G 12 15 18 24 27 30 33 36 39 42 45 48

H 12 15 18 24 27 30 33 36 39 42 45 48 6 / 12

I 12 15 18 24 27 30 33 36 39 42 45 48

J 3 6 9 12 15 18 24 27 30 33 36 39

K 3 6 9 12 15 18 24 27 30 33 36 39 1 / 12

L 3 6 9 12 15 18 24 27 30 33 36 39

29 / 48
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Application 3: Symmetric Players
Game 15 (Payoffs are the same for all players,  GGS: entry)

Naive GGS predicts no entry, Level k: no entry

V(i, n) number of adopters n observed

Player  i 1 2 3 4 5 6 7 8 9 10 11 12 entries

A 8 12 16 20 24 28 32 36 40 44 48 52

B 8 12 16 20 24 28 32 36 40 44 48 52

C 8 12 16 20 24 28 32 36 40 44 48 52

D 8 12 16 20 24 28 32 36 40 44 48 52

E 8 12 16 20 24 28 32 36 40 44 48 52

F 8 12 16 20 24 28 32 36 40 44 48 52

G 8 12 16 20 24 28 32 36 40 44 48 52

H 8 12 16 20 24 28 32 36 40 44 48 52

I 8 12 16 20 24 28 32 36 40 44 48 52

J 8 12 16 20 24 28 32 36 40 44 48 52

K 8 12 16 20 24 28 32 36 40 44 48 52

L 8 12 16 20 24 28 32 36 40 44 48 52

27 / 48
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Application 3: Asymmetric Players
Experiment:

Low types tend to enter, high types tend to stay out. 

Comparative static: higher payoffs in cells off the diagonal lead to more 
entries.

GGS-prediction of same behavior across types does not hold.
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Application 3: Asymmetric Players
Experiment:

Low types tend to enter, high types tend to stay out. 

Comparative static: higher payoffs in cells off the diagonal lead to more 
entries.

GGS-prediction of same behavior across types does not hold.

Behavior may be explained by global-game equilibrium with positive 
variance (cf. HNO 2009)

or by „naive“ GGS: best response to uniform distribution on the number of 
others entering (entry if average number in a row >34).

or by levels of reasoning. Level 0: e.b. enters with prob. 50%, 
level k best response to level k – 1. 
In our games, level k = level 1 for k>1.
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Conclusion
 Supermodular games with many actions or asymmetric

players can be decomposed into smaller games, for which
the global-game selection can be easily derived.

 If solutions for all small games point in direction of one
strategy combination, this is the GGSs of the large game. 

 Noise independence is inherited from smaller games.

 This allows applying the concept of global games to more
complex games.

 GGS cannot explain differences in behavior across
different types.


