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Simple algorithm

Simple algorithm
If consumption < EPV production

action = CC
else
if total SOC > additional demand
action = DD
else
action = |l
SOC State of charge of a battery.
C Charge a battery.
D Discharge a battery.
I

Keep a battery idle.
additional demand  consumption - EPV production.



Performance of simple (no-lookahead) algorithm

Total reward for the year of 2014 = -91367
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Figure 1: Cost and Energy profile



Why use future predictions?

Batteries should

1. have enough charge to satisfy future additional demands.
2. have enough space to store future excess EPV production.

In some cases, it is profitable to use batteries later. Why? Because,
diesel generator has minimum stable generation (MSG).

By using diesel generator,

1. Energy wasted now = MSG - additional demand now.
2. Energy wasted in future = MSG - additional demand in future.

If Energy wasted now < Energy wasted in future, then profitable to

use diesel generator now (i.e. use batteries later)



Algorithm using future predictions

Lookahead Algorithm

If consumption < EPV production
action = CC
else
If it is profitable to use battery in future
action = I
else
action = DD



Performance using future predictions

Total reward for the year of 2014 using 6-hour lookahead = -72506
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Figure 2: Cost and Energy profile



Performance using future predictions

Total reward for the year of 2014 using various values for lookahead

Lookahead Cumulative reward

-73668
-73498
-72506
-72834
10 -73193
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Predicting Consumption

e KNN with neighbours = consumption at the same time on the same
day previous weeks.

Neighbours for 2014-01-31 T 08-00-00 — 2014-01-24 T 08-00-00
2014-01-17 T 08-00-00
2014-01-10 T 08-00-00

e For the year 2014,
value of K RMSE Standard Deviation

5 1.601
6 1.589
7 1.573 2.726
8 1.584
9 1.597




Predicting EPV production

e KNN with neighbours = production at the same time on the
previous days.
Neighbours for 2014-01-31 T 08-00-00 — 2014-01-30 T 08-00-00
2014-01-29 T 08-00-00
2014-01-28 T 08-00-00

e For the year 2014,
value of K RMSE Standard Deviation

14 1.336

15 1.334
16 1.329 2.14
17 1.330

18 1.331




Making use of predictions with other algorithms

e Estimate state values of each state s as V/(s) using DQN.
e Let H = depth to which we can predict future EPV production and
future consumption.

e Model-based Value Expansion (Feinberg et al. [2018])

t+H-1

Qﬁ(st:a) = Z r+ V(§t+H)

T=t

using imagined trajectory as follows:
At state s;, take action a; = a, receive reward r; and transition to
state 5;41 and later

trH-1
{3t41,.. ., 3t n-1} = argmax [ Z rr+ V(§t+H)]

T=t+1



Insights and future work

e Better prediction for EPV production? Currently, we use KNN.
Literature for weather prediction suggest neural networks might give
improved results.

e Prediction only upto certain depth gives improved results.

e Better estimation of V.
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Variational Regret Bounds for RL




Variation in MDPs

e Regret bounds in RL literature depend on the number of changes /.
e For gradual changes, change could occur at every time step.
e Definition of variation for MDP:

\'
L.

V';' = ngiX|Ft+l(s7a)_Ft(5a 3)}7
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—

2 max [|pe1(-[s, ) = pe('[s, a) ;-
t=1

-~
[

where F;(s, a) := mean reward of action a in state s at time t and
p:(s’|s, a) :== prob. of transition to state s’ from state s after taking
action a at time t.

e Regret Rt = E;l (0% — re).
where r; := random reward at time t and p?- = average reward of
the (global) non-stationary optimal policy which knows the reward
distributions and transition probabilities up to time T. 11



UCRL with restarts and its regret bound

UCRL with restarts

2/3
o After every [(\/JrTDi\/")Z/J steps, start a new phase.
T T

e Only use history from the current phase to compute
estimates.

Theorem (Regret Upper Bound)

The regret of UCRL with above restarting schedule is bounded with
probability 1 — 0 as,

Rt < 34DSVAT?3(V4 + DV2)/3\/log (8T2/9)
)
+ DSAlog, (%% )

when T > SA.
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