Regret Bounds for Switching Bandits

Ronald Ortner

Montanuniversität Leoben

Delta Meeting Liège 30 April 2019

Outline

(9) Introduction

(2) Tracking the Best Arm in Switching Bandit Problem
(3) Variational Regret Bounds

Overview WP 3 (Exploration)

- Task 3.1:

RL algorithms for changing environments (M1-M12)

- Task 3.2:

Open-ended exploration in changing environments (M11-M24)

- Task 3.3:

Incorporating state space partitions into exploration (M18-32)

Overview WP 3 (Exploration)

- Task 3.1:

RL algorithms for changing environments (M1-M12)

- Task 3.2:

Open-ended exploration in changing environments (M11-M24)

- Task 3.3:

Incorporating state space partitions into exploration (M18-32)

Task 3.1:
RL algorithms for changing environments (M1-M12) :
Plans for gradually changing environments:

- Give more weight to more recent experience (instead of complete restart):
- Sliding window
- Discounted averages
- Attainable bounds will depend on changes.
- What are suitable models for gradual changes?
- When are \sqrt{T} bounds possible?

```
Task 3.1:
RL algorithms for changing environments (M1-M12) :
```

Plans for gradually changing environments:

- Give more weight to more recent experience (instead of complete restart):
- Sliding window (LLARLA Workshop Best Paper)
- Discounted averages
- Attainable bounds will depend on changes.
- What are suitable models for gradual changes?
- When are \sqrt{T} bounds possible?
- What if number of changes is not known? (COLT 2019)

Outline

(1) Introduction

(2) Tracking the Best Arm in Switching Bandit Problem
(3) Variational Regret Bounds

Setting

Setting for multi-armed bandit problem with changes:

- Horizon T
- Reward distributions may change change L times up to step T.

The regret in this setting can be defined as

$$
\sum_{t=1}^{T}\left(\mu_{t}^{*}-r_{t}\right)
$$

where μ_{t}^{*} is the optimal mean reward at step t.

Previous Work

- Upper bounds of $\tilde{O}(\sqrt{L T})$ for algorithms which use number of changes L :
- Garivier\& Moulines, ALT 2011
- Allesiardo et al, IJDSA 2017
- Lower bound of $\Omega(\sqrt{L T})$, which holds even when L is known.
- Results for two arms (EWRL 2018)

AdSwitch for K arms

AdSwitch for K arms (Sketch)

For episodes (\approx estimated changes) $\ell=1,2, \ldots$ do:

- Let the set GOOD contain all arms.
- Select all arms in GOOD alternatingly.
- Remove bad arms from GOOD.
- Sometimes sample discarded arms not in GOOD (to be able to check for changes).
- Check for changes (of all arms). If a change is detected, start a new episode.

Regret Bound for AdSwitch

W.h.p. the algorithm

- will identify the bad arms,
- will detect significant changes, while the overhead for additional sampling is not too large,
- will make no false detections of a change.

Regret Bound for AdSwitch

W.h.p. the algorithm

- will identify the bad arms,
- will detect significant changes, while the overhead for additional sampling is not too large,
- will make no false detections of a change.

Theorem

The regret of AdSwitch in a switching bandit problem with K arms and L changes is at most

$$
O(\sqrt{(L+1) K T(\log T)})
$$

Outline

(1) Introduction

(2) Tracking the Best Arm in Switching Bandit Problem

(3) Variational Regret Bounds

Variational Bounds

- Regret Bound depends on the number of changes L.
- For gradual changes this is a bad model, as one can have in principle changes at every time step.
- An alternative measure for gradual changes could be the variation of the changes:

$$
V:=\sum_{t} \max _{a \in A}\left|\mu_{t+1}(a)-\mu_{t}(a)\right|
$$

would be the variation of a bandit problem with arm set A and mean $\mu_{t}(a)$ of arm a at step t.

Variational Bounds: Previous Work

Besbes et al. (NIPS 2014) consider variational bounds for bandit problems with changes:

- They show lower bound on regret of

$$
\Omega\left((K V)^{1 / 3} T^{2 / 3}\right)
$$

- They propose an algorithm based on EXP3 with restarts and show regret bound of

$$
\tilde{O}\left((K V)^{1 / 3} T^{2 / 3}\right) .
$$

- Note: Algorithm knows and uses V to set restart times.

Variational Bounds from L-dependent Bounds

Slightly adapting AdSwitch one can guarantee that a new episode $\ell+1$ starts only when there is a significant change in variation V_{ℓ} of current episode ℓ, that is, w.h.p.

$$
\begin{equation*}
V_{\ell} \geq \sqrt{\frac{\ell K \log T}{T}} \tag{1}
\end{equation*}
$$

Variational Bounds from L-dependent Bounds

Slightly adapting AdSwitch one can guarantee that a new episode $\ell+1$ starts only when there is a significant change in variation V_{ℓ} of current episode ℓ, that is, w.h.p.

$$
\begin{equation*}
V_{\ell} \geq \sqrt{\frac{\ell K \log T}{T}} \tag{1}
\end{equation*}
$$

Rewriting (1) gives

$$
\sqrt{\ell} \leq V_{\ell} \sqrt{\frac{T}{K \log T}}
$$

Variational Bounds from L-dependent Bounds

Slightly adapting AdSwitch one can guarantee that a new episode $\ell+1$ starts only when there is a significant change in variation V_{ℓ} of current episode ℓ, that is, w.h.p.

$$
\begin{equation*}
V_{\ell} \geq \sqrt{\frac{\ell K \log T}{T}} \tag{1}
\end{equation*}
$$

Rewriting (1) gives

$$
\sqrt{\ell} \leq V_{\ell} \sqrt{\frac{T}{K \log T}},
$$

and summing up over episodes we get

$$
\sum_{\ell=1}^{L} \sqrt{\ell} \leq V \sqrt{\frac{T}{K \log T}}
$$

Variational Bounds from L-dependent Bounds

Slightly adapting AdSwitch one can guarantee that a new episode $\ell+1$ starts only when there is a significant change in variation V_{ℓ} of current episode ℓ, that is, w.h.p.

$$
\begin{equation*}
V_{\ell} \geq \sqrt{\frac{\ell K \log T}{T}} \tag{1}
\end{equation*}
$$

Rewriting (1) gives

$$
\sqrt{\ell} \leq V_{\ell} \sqrt{\frac{T}{K \log T}},
$$

and summing up over episodes we get

$$
L^{3 / 2} \approx \sum_{\ell=1}^{L} \sqrt{\ell} \leq V \sqrt{\frac{T}{K \log T}}
$$

Variational Bounds from L-dependent Bounds

Now from

$$
L^{3 / 2} \leq V \sqrt{\frac{T}{K \log T}} .
$$

we have

$$
\sqrt{L} \leq V^{1 / 3}\left(\frac{T}{K \log T}\right)^{1 / 6}
$$

Variational Bounds from L-dependent Bounds

Now from

$$
L^{3 / 2} \leq V \sqrt{\frac{T}{K \log T}} .
$$

we have

$$
\sqrt{L} \leq V^{1 / 3}\left(\frac{T}{K \log T}\right)^{1 / 6} .
$$

Plugging this into our regret bound we finally get a regret bound of

$$
\begin{aligned}
\sqrt{L K T \log T} & \leq V^{1 / 3}\left(\frac{T}{K \log T}\right)^{1 / 6} \sqrt{K T \log T} \\
& =V^{1 / 3} T^{2 / 3}(K \log T)^{1 / 3}
\end{aligned}
$$

Variational Bounds from L-dependent Bounds

- Thus, we obtain a regret bound of $V^{1 / 3} T^{2 / 3}$.
- This is best possible (Besbes et al, NIPS 2014).
- Unlike in (Besbes at al, NIPS 2014), this has been achieved without knowing the variation V in advance.
- Another COLT 2019 paper of Y. Chen, C. Lee, H. Luo, and C. Wei that is based on our EWRL paper for the two-arms-case considers contextual bandits and subsumes our results.

