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Overview WP 3 (Exploration)

Task 3.1:
RL algorithms for changing environments (M1–M12)

Task 3.2:
Open-ended exploration in changing environments (M11–M24)

Task 3.3:
Incorporating state space partitions into exploration (M18–32)
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Plans from Kickoff-Meeting

Task 3.1:
RL algorithms for changing environments (M1–M12) :

Plans for gradually changing environments:
Give more weight to more recent experience
(instead of complete restart):

Sliding window
Discounted averages

Attainable bounds will depend on changes.
What are suitable models for gradual changes?
When are

√
T bounds possible?
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Task 3.1:
RL algorithms for changing environments (M1–M12) :

Plans for gradually changing environments:
Give more weight to more recent experience
(instead of complete restart):

Sliding window (LLARLA Workshop Best Paper)
Discounted averages

Attainable bounds will depend on changes.
What are suitable models for gradual changes?
When are

√
T bounds possible?

What if number of changes is not known? (EWRL)
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Setting

Setting for RL with changes:
Horizon T

MDP is allowed to change ` times up to step T .

All MDPs the learner has to deal with have diameter bounded
by D.

The regret in this setting can be defined as

T∑
t=1

(
ρ∗t − rt

)
,

where ρ∗t is the optimal average reward of the MDP the learner acts on
at step t .
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UCRL Summary

Optimistic UCRL algorithm (Jaksch et al., 2010)

Regret bounds of O(DS
√

AT ) for UCRL in MDPs with S states,
A actions and diameter D
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UCRL in Changing Environments

Idea to deal with up to ` (possibly abrupt) changes:

Restart UCRL every τ :=
(T
`

)2/3
steps.

Why it works / Regret Bound:
In ` periods in which MDP changes the regret is at most
` ·
(T
`

)2/3
= `1/3T 2/3.

In the other `2/3T 1/3 periods the regret is bounded by
`2/3T 1/3 ·

(T
`

)1/3
= `1/3T 2/3.
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From Standard UCRL ...

Now, instead of restarts, we want to use a sliding window.

UCRL (Auer, Jaksch, Ortner 2008 & 2010)
For episodes k = 1,2, . . . do:

1 Maintain UCB-like confidence intervals for rewards and transition
probabilities to define set of plausible MDPs M.

2 Calculate optimal policy π̃ in optimistic model M̃ ∈M, i.e.

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π),

where ρ(M, π) is the average reward of policy π in MDPM.
3 Execute π̃ until the visits in some state-action pair have doubled.
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... to Sliding Window UCRL

Sliding Window UCRL
Input: Window size W
For episodes k = 1,2, . . . do:

1 Maintain UCB-like confidence intervals for rewards and transition
probabilities to define set of plausible MDPs M computed from the
previous W steps.

2 Calculate optimal policy π̃ in optimistic model M̃ ∈M, i.e.

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π),

where ρ(M, π) is the average reward of policy π in MDPM.
3 Execute π̃ until the visits in some state-action pair have doubled

(when compared to the number visits in the previous W steps
from the episode start).
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Regret Analysis for Sliding Window UCRL

Regret Analysis:

In episodes with a change (either in the estimation window or the
episode itself), we lose at most the episode length, which is ≤W .
 Respective total regret: O(`W ).

In any other episode of length τ we obtain by UCRL bound that
regret is bounded by Õ(DS

√
Aτ).

As there are Õ(SAT
W ) episodes and the lengths sum up to T , one

gets by Jensen inequality that the respective total regret is

Õ

(
DS
√

A ·
√

T · SAT
W

)
= Õ

(
DS3/2T

√
A
W

)
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Regret Bound for Sliding Window UCRL

A bit more sophisticated analysis gets rid of factor
√

S:

Theorem
In an MDP with S states, A actions, diameter D and ` changes, with
probability of at least 1− δ the regret of SW-UCRL with window size W
after T steps is bounded by

Õ

(
`W + DST

√
A
W

)
.

Optimizing the window size W gives:

Choosing W =
(T
`

)2/3
one obtains regret

Õ
(
`1/3T 2/3

)
just as for UCRL with restarts.

Sliding Window UCRL 14 / 41



Outline

1 Introduction

2 Sliding Window UCRL

3 Tracking the Best Arm in Switching Bandit Problem

4 Variational Regret Bounds

5 Open Questions / Future Work

Tracking the Best Arm in Switching Bandit Problem 15 / 41



Setting

Setting for multi-armed bandit problem with changes:
Horizon T

Reward distributions may change change ` times up to step T .

The regret in this setting can be defined as

T∑
t=1

(
µ∗t − rt

)
,

where µ∗t is the optimal mean reward at step t .
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Previous Work

Upper bounds of Õ(
√
`T ) for algorithms which use number of

changes `:
Garivier& Moulines, ALT 2011
Allesiardo et al, IJDSA 2017

Lower bound of Ω(
√
`T ), which holds even when ` is known.
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Our Algorithm (for two arms)

Algorithm for unknown `:

AdSwitch for two arms (Sketch)
For episodes k = 1,2, . . . do:

Estimation phase:
Select both arms are selected alternatingly,
until better arm has been identified.

Exploitation and checking phase:
Mostly exploit the empirical best arm.
Sometimes sample both arms to check for change.
If a change is detected then start a new episode.
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Our Algorithm

AdSwitch for two arms
For episodes k = 1,2, . . . do:

Estimation phase:
Sample both arms alternatingly in rounds n = 1,2,3, ... until∣∣µ̂1 − µ̂2

∣∣ >√C1 log T
n . Set ∆̂ := µ̂1 − µ̂2.

Exploitation and checking phase:
Let di = 2−i and Ik = max{i : di ≥ ∆̂}.
Randomly choose i from {1,2, . . . , Ik} with probabilities di

√
k+1

T .
With remaining probability choose empirically best arm and repeat
phase.
If an i is chosen, sample both arms alternatingly for 2

⌈
C2 log T

di
2

⌉
steps to check for changes of size di :
If µ̂1 − µ̂2 /∈

[
∆̂− di

4 , ∆̂ + di
4

]
, then start a new episode.
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Regret Bound for AdSwitch

W.h.p. the algorithm
will identify the better arm in the exploration phase,
will detect significant changes in the exploitation phase, while the
overhead for additional sampling is not too large,
will make no false detections of a change.

Theorem
The regret of AdSwitch in a switching bandit problem with two arms
and ` changes is at most

O
(
(log T )

√
(`+ 1)T

)
.
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AdSwitch for K arms

AdSwitch for K arms (Sketch)
For episodes k = 1,2, . . . do:

Let the set A+ of active arms contain all arms.

Select all arms in A+ alternatingly.

Remove bad arms from A+.

Sometimes sample discarded arms not in A+ to check for change.
If a change is detected, start a new episode.

We expect this algorithm to achieve O
(

K (log T )
√

(`+ 1)T
)

regret.
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Variational Bounds

Regret Bounds presented so far depend on the number of
changes `.

For gradual changes this is a bad model, as one can have in
principle changes at every time step.

An alternative measure for gradual changes could be the variation
of the changes:

V :=
∑

t

max
a∈A

∣∣µt+1(a)− µt (a)
∣∣

would be the variation of a bandit problem with arm set A and
mean µt (a) of arm a at step t .
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Variational Bounds: Previous Work

Besbes et al. (NIPS 2014) consider variational bounds for bandit
problems with changes:

They show lower bound on regret of

Ω
(

(K V )1/3T 2/3
)
.

They propose an algorithm based on EXP3 with restarts and show
regret bound of

Õ
(

(K V )1/3T 2/3
)
.

Note: Algorithm knows and uses V to set restart times.
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Variational Bounds from `-dependent Bounds

How to obtain variational from `-dependent bounds (two arms case):
Assume ∆ := |µt (1)− µt (2)| remains the same over all time steps.

Then V = `∆, where ` is the number of changes and

` =
V
∆
. (1)

We have a regret bound of order
√
`T ≤ T ∆, so that

∆ ≥
√
`

T
, or equivalently

1
∆
≤
√

T
`

With (1) we get

` =
V
∆
≤ V

√
T
`

and hence ` ≤ V 2/3T 1/3.

It follows that the regret is bounded by
√
`T ≤ V 1/3T 2/3.
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Variational Bounds from `-dependent Bounds

Thus, we obtain regret bound of V 1/3T 2/3.

This is best possible (Besbes et al, NIPS 2014).

Unlike in (Besbes at al, NIPS 2014), this has been achieved
without knowing the variation V in advance.
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Definition of Variation in Changing MDPs

For RL in MDPs one may consider defining the variation

V :=
∑

t

max
π:S→A

∣∣ρt+1(π)− ρt (π)
∣∣

via the average rewards ρt (π) of policies π at step t .

However, this does not work:
The mean reward of a policy might change little or not at all, while the
underlying rewards and transition probabilities may change a lot.
The variation would be small, but the learning effort large.
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Definition of Variation in Changing MDPs

Thus, we have to define variation “bottom-up” via rewards and
transition probabilities:

V r :=
∑

t

max
s,a∈S×A

∣∣rt+1(s,a)− rt (s,a)
∣∣

V p :=
∑

t

max
s,a∈S×A

∥∥pt+1(·|s,a)− pt (·|s,a)
∥∥

Perturbation bounds for MDPs show that variations V r and V p result in
variation ≤ V r + D · V p with respect to the average reward of any
policy.
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Variational Bounds for RL in Changing MDPs

Can again use UCRL with restarts after any T 2/3

V 2/3 steps with
V := V r + D · V p.

Respective regret is bounded by V 1/3T 2/3.
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Future Work in Task T3.1

Meaningful experiments comparing UCRL with restarts to
SW-UCRL

Generalize AdSwitch to K arms

Generalize variational bounds to K arms and arbitrary gaps

Variational bounds for SW-UCRL

Lower bounds

Open Questions / Future Work 31 / 41
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