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Task 2.1, “Best Arm Identification Tools for Planning”

@ News (BAI) tools that can be useful for Planning
© Keeping Non-Stationarity in Mind

© Recent Work on Planning (and the Simulator)
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The Power of Zipf Sampling

Abbasi-Yadkori, Bartlett, Gabillon, Malek and Valko. Best of both
worlds: Stochastic & adversarial best-arm identification, COLT'18 J

Fort=1,2,.

> Sort and rank the arms by decreasing order of esti-
mated cummulated gain Gi(t —1): Rank arm k as <k)t
» Select arm A; € [K] at random such that

N
(k) log(K)

Recommend, at any given round t,

Ji 2 argmax G (t).
ke{l,...,K}

Figure: The P1 algorithm



The Power of Zipf Sampling

@D uniform

harmonic

1+1/2+1/3+...+1/K=logK

SERRRRARR

Allocations

1 2

Variants of this simple allocation rule has already been used in
different settings:

@ black-box optimization (SequOOL, ALT'19)
e planning (PlatyPOOs, ICML’ 19)
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Some new insights from a toy Active Testing Problem

Kaufmann, Koolen and Garivier, Sequential Test for the Lowest
Mean: from Thompson to Murphy Sampling, NeurlPS'18

J

Fix threshold ~.

[u* =ming g S 'y?J

Fort=1,...,7
e pick an arm A;
e observe X; ~ pia,

After stopping, recommend /71 € {<, >}

Goal: controlled error P, {error} <6
and small sample complexity E,,[7]
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Lower Bound and Oracle Allocation

Generic lower bound [Garivier et al. 16| shows sample complexity
for any d-correct algorithm is at least

Eyulr] > T*(p)In (%)

For our problem the characteristic time and oracle weights are

1

ﬁ w<, Yamay M <,
T . d(p*, vy N B 1
(l’l‘) - N W, (H) - d(payy) s
Z pr> S 1 m=
d(pa,y J o d(pyy)

w}(p): fraction of selections of arm a under a strategy that would
match the lower bound
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Dichotomous Oracle Behaviour! Sampling Rule?

(o] o
T o 0%,
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Dichotomous Oracle Behaviour! Sampling Rule?

o o
T o o9,
L[ S R L h gl
) o

X X & R s s ®

Two different ideas to get those sampling profiles:

@ Thompson Sampling (M¢—1 is posterior after t — 1 rounds)
Sample @ ~ I;_1, then play A; = argmin, 6,.

@ a Lower Confidence Bound algorithm
Play A; = argmin, LCB,(t)

Inria DELTA project



A Solution: Murphy Sampling!

o o
T o o ©
o
Rt v [EECRER vy
{ o
X X ® X ® ® ® ®

A more flexible idea:

@ Murphy Sampling condition on low minimum mean
Sample 6 ~ M1 (-|min, 0, < 7), then play A; = argmin, 0,.

— converges to the optimal allocation in both cases!
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Properties of Murphy Sampling

Asymptotic optimality: N,(t)/t — w_(p) for all p

Sampling rule @ @

Thompson Sampling v X
Lower Confidence Bounds ¥ Vv
Murphy Sampling v Vv

v

Any anytime sampling strategy (A¢): ensuring % — w*(pu) and
good stopping rule 7; guarantee limsups_,q "% < T*(p).
o

— Murphy Sampling combined with a good stopping rule
asymptotically attains the optimal sample complexity.
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:

7B = min (7-; =) where
T« = inf{t € N:3Ja: UCB,(t) <~}
7> = inf{t € N:Va,LCB,(t) > v}

i‘ﬁ RIE ?e0s ;

T=T< T=T>
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:

7B .= min (7-; 7>) where
T« = inf{t € N:3Ja: UCB,(t) <~}
7> = inf{t € N:Va, LCB,(t) >~}

=» enough to have the previous (asymptotic) results, but in
practice we want to leverage the following:

identical or similar

Multiple low arms s conclude p* < ~ faster
tighter confidence interval for p*
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Improved Upper Confidence Bound on a Minimum

Given a subset & € {1,..., K}, let
o Ns(t) the number of selections of an arm in S

@ [is(t) the aggregated empirical mean

Theorem

For any prior 7, for an appropriate choice of threshold 7,

UCB7r:1in(t): = max{q 138 C [K] : [N$d+(ﬂ87 q)_ Inln Ns]

<7 (5l

(8) >p")>1-4.

satisfies PP (Vt € N, UCBT,

min

Improved stopping rule:

T« = inf{t e N: UCBp;,(t) <~}
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Improved Upper Confidence Bounds on a Minimum

UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.

(on can also get a larger LCB on the maximum mean)
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© Keeping Non-Stationarity in Mind
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The Complexity of Rotting Bandits

Rotting bandits: each time an arm is played, its mean decreases
(a specific form of non-stationnarity)

Seznec, Locatelli, Carpentier, Lazaric, Valko. Rotting bandits are
not harder than stochastic ones, AISTATS'19 (oral presentation) J

(the reason Michal is not here today...)
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Piece-wise Stationnary Bandits

Piecewise-Stationary Model: one Example

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Time steps t = 1... T, horizon T'= 5000

nb of breakpoints: T7 =4
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(Quick) related work
e Existing guarantees for a variant of EXP3
EXP3.S [Auer et al. 2002]
o Still, many attempts to adapt stochastic bandit algorithms to
this problem: CUSUM-UCB [Liu et al, 2018], Monitored-UCB
[Cao et al, 2019]

@ Those attemps require the knowledge of

the number of breakpoints + a lower bound on the minimal
magnitude of change

Inria DELTA project



(Quick) related work
e Existing guarantees for a variant of EXP3
EXP3.S [Auer et al. 2002]
o Still, many attempts to adapt stochastic bandit algorithms to
this problem: CUSUM-UCB [Liu et al, 2018], Monitored-UCB
[Cao et al, 2019]

@ Those attemps require the knowledge of

the number of breakpoints + a lower bound on the minimal
magnitude of change

Our contributions:
@ kl-UCB + un efficient adaptive sliding window
@ no need to know anything about the size of a change
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The Bernoulli GLRT

Context: Piecewise i.i.d. bandit with bounded rewards.

Key tool: an efficient change-point detector to detect a change in
the mean of a bounded distribution, the Bernoulli-GLR

=» given a stream of samples (X;) € [0, 1], detection occurs after
n samples if

sup |s X Kl (//)/1:57//)/1:n) + (n - 5) x ki (//)/erl:na ﬁfl:n) > /3(’77 5)
se(1,n]

where [ig.s = (Zf{;s Xs)/(s' —s+1) and

kI(x, y) = xIn(x/y) + (1 = x) In((1 = x)/(1 = y))-
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The Bernoulli GLRT

Context: Piecewise i.i.d. bandit with bounded rewards.

Key tool: an efficient change-point detector to detect a change in
the mean of a bounded distribution, the Bernoulli-GLR

=» given a stream of samples (X;) € [0, 1], detection occurs after
n samples if

sup |s x kl (//)/1:57 //)flzn) + (n - 5) X Kkl (//)/erl:m ﬁ‘l:n) > 5(”» 5)
se(1,n]

Lemma (false alarm probability)

For 5(n,d) ~ In(3ny/n/d) the probability that a detection occurs
on a i.i.d. stream is at most J.
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kl-UCB meets the GLRT

Parameters: a € (0,1), § > 0.
Arm selection: at round t,
o ifa>0andt mod |K/a] €{l,...,K},

(forced exploration)  A¢ <+t mod |K/«]

@ else, select

(kI-UCB) A; < argmax ; UCB,(t)
Ta(t) : instant of the last restart
na(t) : number of selection of arm a since the last restart
fio(t) : empirical mean of samples from arm a since last restart
UCB,(£) i= max{q € [0,1] : n,(¢) x KI (7a(t), ) < F(t — 7a(8))}.

Restarts: | ocal or Global after a change is detected by the
Bernoulli-GLRT on the mean of the selected arm
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@ a unified analysis of Local and Global changes

@ a tuning of the algorithm that ensures O(T7v/T) when T is
unknown and O(y/T 1 T) regret if T is known

@ good practical performance !

work in progress with Lilian Besson (CentraleSupélec Rennes) and
Odalric Maillard (Inria) J
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© Recent Work on Planning (and the Simulator)
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Planning in Regularized MDPs and Games

@ Planning problem: given a generative model, estimate the value
function at a state s;

@ K actions, state space of any cardinality;
o We study value functions of entropy regularized MDPs and games.

@ Example: Bellman equations for MDPs with entropy regularization

Vis) = max | B[s.3) + V(D] + AH(() M)
entropy
—Mogzexp< E[r(s,a) + V(2 )1),z~P(-|s,a) )
acA

Omar D. Domingues Planning in Entropy Regularized MDPs and C April 30, 2019



Planning in Regularized MDPs and Games

General case:
V(s) = Fs(Qs), with Qs(a) =E][r(s,a) +vV(2)], z~ P(-|s,a) (3)

@ F; = max: Bellman equations for MDPs;

@ f; = max or min according to the player: value function for
turn-based two-player game (discounted).

@ Replace max and min by smooth approximations with LogSumExp =
entropy regularization on the policy.

@ Main assumptions:

o (smoothness) |Fs(x) — Fs(x0) — (x — x0) " VFs(x0)| < L||x — xol[3;
o Fs is 1-Lipschitz, nonnegative gradient.
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Our algorithm

Algorithm 1 sampleV

Algorithm 2 estimateQ

1: Input: (s,e) € S x Ry
2: ife > 1/(1 — ~) then
Output: 0
elsej\l‘e > & then
Qs + estimateQ(s,e)
Output: F, (@s)
else if ¢ < Z then
Qs + estimateQ(s, VEe)
9: A « action drawn from :FI(Q)
10: (R, Z) + oracle(s, A)
11: V < sampleV(Z,c/\/7)
12: end if R
13: Output: F. (Q.) - QIVE. (Q.) + (R +

wler @),

PN > NAY

0, + estimateq(so, {(£0)) A~
(50 )
2
) Ao ~p (0.)
Q,, « estimateQ(s1,{(e)) I( ) A
s)

P xl ~p(0,) /)
=N ~ A A
re

mar D. Domi
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10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21

Input: (s,2)
// Compute the value of N'
:ife > 1/(1 — ) then
Output: (0,...,0)
: elseif ¢ > & then
2 log(2K/6)
N aoamr e
. elseif ¢ < Z then
C i (48 + 5 +1
c? log(2K/8)
N g e
end if
1] Average to estimate Q function
fora € Ado

gi < Oforiel,.,N
forie1,...,N do
(R, Z) + oracle(s,a).

V « sampleV (Z,¢/\7)
qi <+ R+ w\A/
end for
Qs(a) + mean (g1, ..., an)
end for

Output: @s

Algorithm 3 SmoothCruiser

Input: (s,6,8) € S x Ry x Ry

g (1—

V)/KL

Set § and  as a global parameters
Qs « estimateQ(s,¢)

Output: F (@a)

arized MDPs and C

N



Guarantees

Let n(e,d) be the number of calls to the generative model (oracle) before
the algorithm terminates. For any state s and €, > 0,

n(e.9) < Fiog (2) [caog (2)) = —0 (1) ve s o

where c1, 2, c3, ¢4 and cs are constants that depend only on K, L and .

<

For any state s and §,¢ > 0,

P H V(s) - V(s)( > e] < on(e, 9).
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