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The Power of Zipf Sampling

Abbasi-Yadkori, Bartlett, Gabillon, Malek and Valko. Best of both
worlds: Stochastic & adversarial best-arm identification, COLT’18

For t = 1, 2, . . .

I Sort and rank the arms by decreasing order of esti-
mated cummulated gain Ĝk(t − 1): Rank arm k as ˜〈k〉t

I Select arm At ∈ [K ] at random such that

P (At = k) =
1

˜〈k〉t log(K )

Recommend, at any given round t,

Jt , arg max
k∈{1,...,K}

Ĝk(t).

Figure: The P1 algorithm
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The Power of Zipf Sampling

Allocations

uniform
harmonic

1 2 K

1+1/2+1/3+...+1/K≈logK

Variants of this simple allocation rule has already been used in
different settings:

black-box optimization (SequOOL, ALT’19)

planning (PlatγPOOs, ICML’ 19)
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Some new insights from a toy Active Testing Problem

Kaufmann, Koolen and Garivier, Sequential Test for the Lowest
Mean: from Thompson to Murphy Sampling, NeurIPS’18

µ1 µ2 . . . µK

γ

Fix threshold γ.

µ∗ := mini µi ≶ γ?
For t = 1, . . . , τ
• pick an arm At

• observe Xt ∼ µAt

After stopping, recommend m̂ ∈ {<,>}

Goal: controlled error Pµ {error} < δ
and small sample complexity Eµ[τ ]
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Lower Bound and Oracle Allocation

Generic lower bound [Garivier et al. 16] shows sample complexity
for any δ-correct algorithm is at least

Eµ[τ ] ≥ T ∗(µ) ln
(

1
δ

)
.

For our problem the characteristic time and oracle weights are

T ∗(µ) =





1

d(µ∗, γ)
µ∗ < γ,

∑

a

1

d(µa, γ)
µ∗ > γ,

w∗a (µ) =





1(a=a∗) µ∗ < γ,
1

d(µa,γ)∑
j

1
d(µj ,γ)

µ∗ > γ.

w∗a (µ): fraction of selections of arm a under a strategy that would
match the lower bound
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Dichotomous Oracle Behaviour! Sampling Rule?

<
←
µ
→ γ

>

γ

Two different ideas to get those sampling profiles:

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

a Lower Confidence Bound algorithm
Play At = arg mina LCBa(t)

Inria DELTA project



Dichotomous Oracle Behaviour! Sampling Rule?

<
←
µ
→ γ

>

γ

Two different ideas to get those sampling profiles:

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

a Lower Confidence Bound algorithm
Play At = arg mina LCBa(t)

Inria DELTA project



A Solution: Murphy Sampling!

<
←
µ
→ γ

>

γ

A more flexible idea:

Murphy Sampling condition on low minimum mean
Sample θ ∼ Πt−1 (·|mina θa < γ), then play At = arg mina θa.

→ converges to the optimal allocation in both cases!
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Properties of Murphy Sampling [KKG, NeurIPS’18]

Theorem

Asymptotic optimality: Na(t)/t → w∗a (µ) for all µ

Sampling rule < >

Thompson Sampling
Lower Confidence Bounds
Murphy Sampling

Lemma

Any anytime sampling strategy (At)t ensuring Nt
t → w∗(µ) and

good stopping rule τδ guarantee lim supδ→0
τδ

ln 1
δ

≤ T ∗(µ).

→ Murphy Sampling combined with a good stopping rule
asymptotically attains the optimal sample complexity.
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:
τBox := min (τ<; τ>) where

τ< = inf{t ∈ N : ∃a : UCBa(t) < γ}
τ> = inf{t ∈ N : ∀a,LCBa(t) > γ}

τ = τ< τ = τ>
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:
τBox := min (τ<; τ>) where

τ< = inf{t ∈ N : ∃a : UCBa(t) < γ}
τ> = inf{t ∈ N : ∀a,LCBa(t) > γ}

Ü enough to have the previous (asymptotic) results, but in
practice we want to leverage the following:

Multiple low arms
identical or similar

⇒
{

conclude µ∗ < γ faster

tighter confidence interval for µ∗

Inria DELTA project



Improved Upper Confidence Bound on a Minimum

Given a subset S ⊆ {1, . . . ,K}, let

NS(t) the number of selections of an arm in S
µ̂S(t) the aggregated empirical mean

Theorem

For any prior π, for an appropriate choice of threshold T ,

UCBπmin(t) : = max
{
q : ∃S ⊆ [K ] :

[
NSd+(µ̂S , q)− ln lnNS

]

≤ T
(

ln 1
δπ(S)

)}

satisfies P (∀t ∈ N,UCBπmin(t) > µ∗) ≥ 1− δ.

Improved stopping rule:

τ< = inf{t ∈ N : UCBπmin(t) ≤ γ}
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Improved Upper Confidence Bounds on a Minimum
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UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.

(on can also get a larger LCB on the maximum mean)
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The Complexity of Rotting Bandits

Rotting bandits: each time an arm is played, its mean decreases
(a specific form of non-stationnarity)

Seznec, Locatelli, Carpentier, Lazaric, Valko. Rotting bandits are
not harder than stochastic ones, AISTATS’19 (oral presentation)

(the reason Michal is not here today...)
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Piece-wise Stationnary Bandits

Piecewise-Stationary Model: one Example
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Time steps t= 1. . . T, horizon T= 5000
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History of means for Non-Stationary MAB, Bernoulli with 4 break-points
Arm #0
Arm #1
Arm #2

nb of breakpoints: ΥT = 4
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Positioning

(Quick) related work

Existing guarantees for a variant of EXP3
EXP3.S [Auer et al. 2002]

Still, many attempts to adapt stochastic bandit algorithms to
this problem: CUSUM-UCB [Liu et al, 2018], Monitored-UCB
[Cao et al, 2019]

Those attemps require the knowledge of

the number of breakpoints + a lower bound on the minimal
magnitude of change

Our contributions:

kl-UCB + un efficient adaptive sliding window

no need to know anything about the size of a change
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The Bernoulli GLRT

Context: Piecewise i.i.d. bandit with bounded rewards.

Key tool: an efficient change-point detector to detect a change in
the mean of a bounded distribution, the Bernoulli-GLR

Ü given a stream of samples (Xs) ∈ [0, 1], detection occurs after
n samples if

sup
s∈[1,n]

[
s × kl (µ̂1:s , µ̂1:n) + (n − s)× kl (µ̂s+1:n, µ̂1:n)

]
≥ β(n, δ)

where µ̂s:s′ = (
∑s′

k=s Xs)/(s ′ − s + 1) and

kl(x , y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)).
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The Bernoulli GLRT

Context: Piecewise i.i.d. bandit with bounded rewards.

Key tool: an efficient change-point detector to detect a change in
the mean of a bounded distribution, the Bernoulli-GLR

Ü given a stream of samples (Xs) ∈ [0, 1], detection occurs after
n samples if

sup
s∈[1,n]

[
s × kl (µ̂1:s , µ̂1:n) + (n − s)× kl (µ̂s+1:n, µ̂1:n)

]
≥ β(n, δ)

Lemma (false alarm probability)

For β(n, δ) ' ln(3n
√
n/δ) the probability that a detection occurs

on a i.i.d. stream is at most δ.
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kl-UCB meets the GLRT

Parameters: α ∈ (0, 1), δ > 0.
Arm selection: at round t,

if α > 0 and t mod bK/αc ∈ {1, . . . ,K},
(forced exploration) At ← t mod bK/αc

else, select

(kl-UCB) At ← arg max a UCBa(t)

τa(t) : instant of the last restart

na(t) : number of selection of arm a since the last restart

µ̂a(t) : empirical mean of samples from arm a since last restart

UCBa(t) := max
{
q ∈ [0, 1] : na(t)× kl (µ̂a(t), q) ≤ f (t − τa(t))

}
.

Restarts: Local or Global after a change is detected by the
Bernoulli-GLRT on the mean of the selected arm
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Results

a unified analysis of Local and Global changes

a tuning of the algorithm that ensures O(ΥT

√
T ) when ΥT is

unknown and O(
√

ΥTT ) regret if ΥT is known

good practical performance !

work in progress with Lilian Besson (CentraleSupélec Rennes) and
Odalric Maillard (Inria)
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Planning in Regularized MDPs and Games

Planning problem: given a generative model, estimate the value
function at a state s;

K actions, state space of any cardinality;

We study value functions of entropy regularized MDPs and games.

Example: Bellman equations for MDPs with entropy regularization

V (s) = max
π(·|s)∈P(A)

E [r(s, a) + γV (z)] + λH(π(·|s))︸ ︷︷ ︸
entropy

(1)

= λ log
∑

a∈A
exp

(
1

λ
E [r(s, a) + γV (z)]

)
, z ∼ P(·|s, a) (2)
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Planning in Regularized MDPs and Games

General case:

V (s) = Fs(Qs), with Qs(a) = E [r(s, a) + γV (z)] , z ∼ P(·|s, a) (3)

Fs = max: Bellman equations for MDPs;

Fs = max or min according to the player: value function for
turn-based two-player game (discounted).

Replace max and min by smooth approximations with LogSumExp =
entropy regularization on the policy.

Main assumptions:

(smoothness)
∣∣Fs(x)− Fs(x0)− (x − x0)

T∇Fs(x0)
∣∣ ≤ L||x − x0||22;

Fs is 1-Lipschitz, nonnegative gradient.
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Our algorithm
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Guarantees

Theorem

Let n(ε, δ) be the number of calls to the generative model (oracle) before
the algorithm terminates. For any state s and ε, δ > 0,

n(ε, δ) ≤ c1
ε4

log
(c2
δ

) [
c3 log

(c4
ε

)]log2(c5(log( c2
δ )))

= O
(

1

ε4+c

)
, ∀c > 0

where c1, c2, c3, c4 and c5 are constants that depend only on K, L and γ.

Theorem

For any state s and δ, ε > 0,

P
[∣∣∣V̂ (s)− V (s)

∣∣∣ > ε
]
≤ δn(ε, δ).

Omar D. Domingues Planning in Entropy Regularized MDPs and Games April 30, 2019 5 / 5


	News (BAI) tools that can be useful for Planning
	Keeping Non-Stationarity in Mind
	Recent Work on Planning (and the Simulator)

