UPF progress report

Anders Jonsson

DELTA meeting 4 October 2018

Overview

Evaluation of decomposition strategies for lifelong reinforcement learning

Improving width-based planning with compact policies

Summary

- Master's thesis of Marc Alvinyà
- Aim: evaluate a set of options and identify options that can be pruned
- Idea: adapt action elimination to the hierarchical setting [Even-Dar et al. 2006]

Setting

- Fixed set of options in a simple domain
- Each option terminates in a given partial state
- Two evaluation criteria of an option o in state s
 - **1.** Q-value: Q(s, o)
 - 2. Estimated reward + value: $\widehat{R}(s, o) + V(s')$

Q-value

Estimated reward + value

Overview

Evaluation of decomposition strategies for lifelong reinforcement learning

Improving width-based planning with compact policies

Summary

- Paper at the ICML / IJCAI / AAMAS 2018 Workshop on Planning and Learning (PAL)
- Joint work with Miquel Junyent and Vicenç Gómez
- Aim: explore the combination of width-based planning with deep reinforcement learning

Planning and Learning in sequential decision making

Planning Community

- Action model is known and often deterministic
- Goal-directed behaviors
- ► Heuristic search, Width-based planning, SAT, etc

Machine Learning Community

- Action model is unknown and stochastic
- Maximize expected cumulative reward
- Deep Reinforcement Learning

Challenge: Exploit strengths of both approaches

Iterated Width (IW) (Lipovetzky & Geffner 2012)

- A blind (breadth-first) search exploration method for planning
- States factored into features $\phi(s)$
- IW(i): Prunes states that are not novel for width i

Novelty

A state s is **novel for width** i if at least one n-tuple of features $\phi(s)$ appears for the first time during search, with $n \leq i$

• Complexity exponential in *i*, but independent of |S|

Different planning approaches

Width-based planning in Atari

- ▶ RAM-based features, IW + greedy actions (Lipovetzky+ 2015)
- Pixel-based features, Rollout IW (Bandres+ 2018)

Planning in deep reinforcement learning

- Monte-Carlo tree search
- Integrate planning and learning: AlphaZero (Silver+ 2017), Offline MCTS planning (Guo+ 2014)
- Random exploration, ignores state structure

Our work: Policy-guided Iterated Width (PIW)

- A novel, structured, exploration strategy
- Imitation learning using IW as the teacher

Policy-guided Iterated Width (PIW)

PIW: planning step

Novelty table

feat.	value	depth
f ₁	0	0
	1	1
f ₂	0	2
	1	0
f ₃	0	0
	1	
f ₄	0	
	1	0

Step by step demonstration: http://bit.ly/PIW-plan

Anders Jonsson

PIW: planning step

Step by step demonstration: http://bit.ly/PIW-plan

PIW: learning step

- Supervised learning: π^{target} extracted from the plan
- Sample minibatch from the dataset and minimize

$$-\frac{1}{n}\sum_{i=1}^{n}\pi_{i}^{target}(\cdot|s_{i})^{\top}\log\widehat{\pi}_{\theta}(\cdot|s_{i})$$

- Policy update similar to AlphaZero
- Easily parallelized: More than one actor performing a lookahead, with shared NN parameters.

Dynamic features

- Automatic and fast feature extraction
- Binary discretization: motivated by the use of ReLUs

Simple key-door environments

- 10 × 10 gridworld environment
- Sparse reward, episode terminates:
 - when the agent picks the key and reaches the door (r = +1)
 - when hitting a wall (r = -1)
 - after 200 steps (r = 0)
- ▶ The agent starts each episode at position (1,1)

Simple environments: lookahead

- PIW(1) outperforms AlphaZero
- Similar performance using BASIC and dynamic features

Simple environments: lookahead

 AlphaZero is not able to achieve the goal in a more complex environment

Simple environments: compact policy

- The compact policy learned by PIW(1) performs better than A2C
- We evaluated it every 20k frames

Simple environments: compact policy

- The policy also outperforms A2C in this setting
- Both algorithms require more steps, and result in a more noisy performance

Results in Atari 2600: lookahead

	IW	RIW	RIW	PIW
	RAM	BPROST	BPROST	dynamic
Game	(#1500)	(0.5s)	(32s)	(#100)
Breakout	384.0	82.4	36.0	107.1
Freeway	31.0	2.8	12.6	28.65
Pong	21.0	-7.4	17.6	20.7
Qbert	3,705.0	3,375.0	8,390.0	415,271.5

- PIW outperforms Rollout IW
- Comparable results to IW with RAM
- Few nodes per iteration: $\#100 \sim 1s \text{ (vs } \#1500/32s)$

Results in Atari 2600

Conclusions

Contributions

- > PIW: Improves IW planning *reinforcing* promising paths
- Dynamic features: no need for hand-crafted features
- Simple sparse-reward environment:
 - PIW (lookahead) outperfoms AlphaZero
 - PIW (policy estimate) better than A2C
- ► Atari:
 - Better than Rollout IW with BPROST features
 - Comparable to IW with RAM features (less nodes!)

Results in Atari 2600: compact policy

Game	Human	DQN	A3C	A3C+	PIW
Breakout	31.8	259.40	432.42	473.93	6.9
Freeway	29.6	30.12	0.00	30.48	23.55
Pong	9.3	19.17	20.84	20.75	16.38
Qbert	13,455.0	7,094.91	19,175.72	19,257.55	570.5

- The policy estimate learned by PIW is not able to achieve state-of-the-art RL performance
- Far less training frames: 15M transitions include all generated trees
- ► Frameskip of 15 instead of 4 as in DQN or A3C