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Summary

I Master's thesis of Marc Alvinyà

I Aim: evaluate a set of options and identify options that can be
pruned

I Idea: adapt action elimination to the hierarchical setting
[Even-Dar et al. 2006]
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Setting

I Fixed set of options in a simple domain

I Each option terminates in a given partial state

I Two evaluation criteria of an option o in state s

1. Q-value: Q(s, o)

2. Estimated reward + value: R̂(s, o) + V (s ′)
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Q-value
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Estimated reward + value
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Summary

I Paper at the ICML / IJCAI / AAMAS 2018 Workshop on
Planning and Learning (PAL)

I Joint work with Miquel Junyent and Vicenç Gómez

I Aim: explore the combination of width-based planning with
deep reinforcement learning
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Planning and Learning in sequential decision making

Planning Community

I Action model is known and often deterministic

I Goal-directed behaviors

I Heuristic search, Width-based planning, SAT, etc

Machine Learning Community

I Action model is unknown and stochastic

I Maximize expected cumulative reward

I Deep Reinforcement Learning

Challenge: Exploit strengths of both approaches
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Iterated Width (IW) (Lipovetzky & Ge�ner 2012)

I A blind (breadth-�rst) search exploration method for planning

I States factored into features φ(s)

I IW(i): Prunes states that are not novel for width i

Novelty

A state s is novel for width i if at least one n-tuple of features
φ(s) appears for the �rst time during search, with n ≤ i

(0, 0, 0)

(1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 0, 1)

I Complexity exponential in i , but independent of |S|

Anders Jonsson UPF progress report 10/25



Evaluation of decomposition strategies for lifelong reinforcement learning Improving width-based planning with compact policies

Di�erent planning approaches

Width-based planning in Atari

I RAM-based features, IW + greedy actions (Lipovetzky+ 2015)

I Pixel-based features, Rollout IW (Bandres+ 2018)

Planning in deep reinforcement learning

I Monte-Carlo tree search

I Integrate planning and learning: AlphaZero (Silver+ 2017),
O�ine MCTS planning (Guo+ 2014)

I Random exploration, ignores state structure

Our work: Policy-guided Iterated Width (PIW)

I A novel, structured, exploration strategy

I Imitation learning using IW as the teacher
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Policy-guided Iterated Width (PIW)
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PIW: planning step
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Step by step demonstration: http://bit.ly/PIW-plan
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PIW: planning step
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Step by step demonstration: http://bit.ly/PIW-plan
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PIW: learning step

I Supervised learning: πtarget extracted from the plan

I Sample minibatch from the dataset and minimize

−1

n

n∑
i=1

πtarget
i (·|si )> log π̂θ(·|si )

I Policy update similar to AlphaZero

I Easily parallelized: More than one actor performing a
lookahead, with shared NN parameters.
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Dynamic features

I Automatic and fast feature extraction

I Binary discretization: motivated by the use of ReLUs

4x84x84

16 filters 8x8

32 filters 4x4 256 units

Input layer Convolutional 
layer with ReLU Convolutional 

layer with ReLU

Fully connected 
layer with ReLU

Output layer

Discretization

Dynamic features for IW
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Simple key-door environments

I 10× 10 gridworld environment

I Sparse reward, episode terminates:
I when the agent picks the key and reaches the door (r = +1)
I when hitting a wall (r = −1)
I after 200 steps (r = 0)

I The agent starts each episode at position (1,1)

BASIC features:
( (0,0), ‘gray’ ),

…
( (1,1), ‘blue’ ),
( (1,2), ‘black’ ),

...
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Simple environments: lookahead

I PIW(1) outperforms AlphaZero

I Similar performance using BASIC and dynamic features
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Simple environments: lookahead

I AlphaZero is not able to achieve the goal in a more complex
environment
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Simple environments: compact policy

I The compact policy learned by PIW(1) performs better than
A2C

I We evaluated it every 20k frames
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Simple environments: compact policy

I The policy also outperforms A2C in this setting

I Both algorithms require more steps, and result in a more noisy
performance
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Results in Atari 2600: lookahead

IW RIW RIW PIW
RAM BPROST BPROST dynamic

Game (#1500) (0.5s) (32s) (#100)

Breakout 384.0 82.4 36.0 107.1
Freeway 31.0 2.8 12.6 28.65
Pong 21.0 -7.4 17.6 20.7
Qbert 3,705.0 3,375.0 8,390.0 415,271.5

I PIW outperforms Rollout IW

I Comparable results to IW with RAM

I Few nodes per iteration: #100 ∼ 1s (vs #1500/32s)
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Results in Atari 2600
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Conclusions

Contributions

I PIW: Improves IW planning reinforcing promising paths

I Dynamic features: no need for hand-crafted features

I Simple sparse-reward environment:
I PIW (lookahead) outperfoms AlphaZero
I PIW (policy estimate) better than A2C

I Atari:
I Better than Rollout IW with BPROST features
I Comparable to IW with RAM features (less nodes!)
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Results in Atari 2600: compact policy

Game Human DQN A3C A3C+ PIW

Breakout 31.8 259.40 432.42 473.93 6.9
Freeway 29.6 30.12 0.00 30.48 23.55
Pong 9.3 19.17 20.84 20.75 16.38
Qbert 13,455.0 7,094.91 19,175.72 19,257.55 570.5

I The policy estimate learned by PIW is not able to achieve
state-of-the-art RL performance

I Far less training frames: 15M transitions include all generated
trees

I Frameskip of 15 instead of 4 as in DQN or A3C
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