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Evaluation of decomposition strategies for lifelong reinforcement learning

Summary

» Master’s thesis of Marc Alvinya
» Aim: evaluate a set of options and identify options that can be
pruned

> ldea: adapt action elimination to the hierarchical setting
[Even-Dar et al. 2006]
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Evaluation of decomposition strategies for lifelong reinforcement learning

Setting
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» Fixed set of options in a simple domain
» Each option terminates in a given partial state
» Two evaluation criteria of an option o in state s
1. Q-value: Q(s,0)
2. Estimated reward + value: R(s,0) + V(s')
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Evaluation of decomposition strategies for lifelong reinforcement learning
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Evaluation of decomposition strategies for lifelong reinforcement learning

Estimated reward + value
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Improving width-based planning with compact policies
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Improving width-based planning with compact policies

Summary

» Paper at the ICML / [JCAI / AAMAS 2018 Workshop on
Planning and Learning (PAL)

» Joint work with Miquel Junyent and Viceng Gémez

» Aim: explore the combination of width-based planning with
deep reinforcement learning
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Improving width-based planning with compact policies

Planning and Learning in sequential decision making

Planning Community

» Action model is known and often deterministic
» Goal-directed behaviors
» Heuristic search, Width-based planning, SAT, etc

Machine Learning Community

» Action model is unknown and stochastic
» Maximize expected cumulative reward

» Deep Reinforcement Learning

Challenge: Exploit strengths of both approaches
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Improving width-based planning with compact policies

Iterated Width (IW) (Lipovetzky & Geffner 2012)

» A blind (breadth-first) search exploration method for planning

» States factored into features ¢(s)
» IW(i): Prunes states that are not novel for width i

Novelty
A state s is novel for width / if at least one n-tuple of features
¢(s) appears for the first time during search, with n </

(0,0,0)

LN
(1,0,1)(1:6:0) (0, 1, 1) |(0:6T)

» Complexity exponential in /, but independent of |S|
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Improving width-based planning with compact policies

Different planning approaches
Width-based planning in Atari

» RAM-based features, IW + greedy actions (Lipovetzky+ 2015)
» Pixel-based features, Rollout IW (Bandres+ 2018)

Planning in deep reinforcement learning

» Monte-Carlo tree search

» Integrate planning and learning: AlphaZero (Silver+ 2017),
Offline MCTS planning (Guo+ 2014)

» Random exploration, ignores state structure

Our work: Policy-guided Iterated Width (PIW)

> A novel, structured, exploration strategy

» Imitation learning using IW as the teacher
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Policy-guided Iterated Width (PIW)

Improving width-based planning with compact policies
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Improving width-based planning with compact policies

PIW: planning step
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Step by step demonstration: http://bit.ly/PIW-plan
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Improving width-based planning with compact policies

PIW: planning step
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Step by step demonstration: http://bit.ly/PIW-plan
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Improving width-based planning with compact policies

PIW: learning step

v

Supervised learning: w8t extracted from the plan

v

Sample minibatch from the dataset and minimize

i _
- Z T8 (|si) T log o(-|si)
i=1

v

Policy update similar to AlphaZero

v

Easily parallelized: More than one actor performing a
lookahead, with shared NN parameters.
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Improving width-based planning with compact policies

Dynamic features

» Automatic and fast feature extraction

» Binary discretization: motivated by the use of RelLUs

Fully connected
layer with ReLU Convolutional layer with ReLU

layer with ReLU
@ Discretization
Dynamic features for IW
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Improving width-based planning with compact policies

Simple key-door environments

» 10 x 10 gridworld environment
» Sparse reward, episode terminates:

» when the agent picks the key and reaches the door (r = +1)
» when hitting a wall (r = —1)
» after 200 steps (r = 0)

» The agent starts each episode at position (1,1)

BASIC features:
((0,0), ‘gray’),

((1,1), ‘blue’ ),
((1,2), black’),
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Improving width-based planning with compact policies

Simple environments: lookahead
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» PIW(1) outperforms AlphaZero

» Similar performance using BASIC and dynamic features
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Improving width-based planning with

Simple environments: lookahead
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» AlphaZero is not able to achieve the goal in a more complex

environment

policies
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Improving width-based planning with policies

Simple environments: compact policy
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» The compact policy learned by PIW(1) performs better than
A2C

» We evaluated it every 20k frames
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Improving width-based planning with policies

Simple environments: compact policy
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» The policy also outperforms A2C in this setting

» Both algorithms require more steps, and result in a more noisy
performance
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Improving width-based planning with compact policies

Results in Atari 2600: lookahead

W RIW RIW PIW

RAM BPROST BPROST dynamic

Game (#£1500) (0.5s) (32s) (#100)
Breakout 384.0 82.4 36.0 107.1
Freeway 31.0 2.8 12.6 28.65
Pong 21.0 -7.4 17.6 20.7
Qbert 3,705.0 3,375.0 8,390.0 415,271.5

» PIW outperforms Rollout W
» Comparable results to IW with RAM
» Few nodes per iteration: #100 ~ 1s (vs #1500/32s)
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Improving width-based with compact policies

Results in Atari 2600
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Improving width-based planning with compact policies

Conclusions

Contributions

» PIW: Improves IW planning reinforcing promising paths

» Dynamic features: no need for hand-crafted features

» Simple sparse-reward environment:
» PIW (lookahead) outperfoms AlphaZero
» PIW (policy estimate) better than A2C
> Atari:

» Better than Rollout IW with BPROST features
» Comparable to IW with RAM features (less nodes!)
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Results in Atari 2600: compact policy

Game Human DQN A3C A3C+ PIW
Breakout 31.8 259.40 432.42 473.93 6.9
Freeway 29.6 30.12 0.00 30.48 23.55
Pong 9.3 19.17 20.84 20.75 16.38
Qbert 13,455.0 7,094.91 19,175.72 19,257.55 570.5

» The policy estimate learned by PIW is not able to achieve
state-of-the-art RL performance

» Far less training frames: 15M transitions include all generated

trees

» Frameskip of 15 instead of 4 as in DQN or A3C
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