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Abstract. We address the problem of texture segmentation by using a novel a�ne invariant model.
The introduction of a�ne invariance as a requirement for texture analysis goes beyond what is known
of the human performance and also beyond the psychophysical theories. We propose to compute texture
features using a�ne invariant intrinsic neighborhoods and a�ne invariant intrinsic orientation matrices.
We discuss several possibilities for the de�nition of the channels and give comparative experimental results
where an a�ne invariant Mumford-Shah type energy functional is used to compute the multichannel a�ne
invariant segmentation. We prove that the method is able to retrieve faithfully the texture regions and to
recover the shape from texture information in images where several textures are present. The numerical
algorithm is multiscale.

1. Introduction

Texture is an important characteristic in order to
analyse images. Texture analysis has been used in
classi�cation tasks concerning 2D images in gen-
eral and segmentation of aerial or medical images
in particular. Texture segmentation has been at-
tempted in many di�erent ways. Most of them
follow the same general strategy: a process of fea-
ture extraction followed by a segmentation. The
main purpose of feature extraction is to map dif-
ferences in spatial structures, either stochastic or
geometric, into di�erence values in feature space.
Then segmentation methods analyse the feature
space in order to extract homogeneous regions.

Feature extraction has been e�ectuated by com-
puting characteristics of the autocorrelation func-
tion, partitioning of the Fourier transform en-
ergy into radial and angular bins [12], using tex-
ton statistics [65], DOG �lters [50], using the
dominant local orientation estimation at di�er-

ent scales applying the Laplacian pyramid [11],
computing the energy of special texture masks
[46], [64], interpretation of coocurrence matrices
through their moments [36], [22], identi�cation
of Markov random process parameters [31], us-
ing a Coupled-membrane model in which the tex-
ture features are the power responses of quadra-
ture Gabor �lters [48], using decompositions in
wavelets [43], and many other methods which can
be grouped loosely into those based on statisti-
cal methods and those using spatial-frequency or
spatial-spatial frequency methods. For a detailed
review we refer, for instance, to [55].

Our goal in this paper is to propose a�ne in-
variant methods for texture segmentation and to
prove that they work (at least) as well as the eu-
clidean ones. Since images are the projections
of physical objects onto a two dimensional pla-
nar surface, a�ne invariance appears as a simpli-
�ed form of projective invariance (when the focal
distance tends to in�nity). All the methods we
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propose are uni�ed by a simple a�ne invariant
energy model, with only two terms. One term
is allways the same, the A�ne Total Variation,
and the other one uses a�ne invariant texture fea-
tures related to, either the dominant local orien-
tation notion �oriented patterns are common in
nature and orientation selective mechanisms are
of interest since Hubel and Wiesel's [38] discovery
of orientation selective cells in mammalian visual
cortex�, or moments. Moreover, using the a�ne
invariant texture information comming from dom-
inant local orientation, the method is able to face
the Shape from Texture problem in a similar way
as the one proposed by Garding-Lindeberg in [33].

Let us brie
y introduce our approach. Coming
back to the literature, methods based on coocur-
rence matrices or the autocorrelation function ex-
ploit the fact that the texture is repetitive. As
a consequence, peaks occur in the autocorrelation
function and concentration of energy is observed
in the frequency domain. These non-local meth-
ods are able to take into account textures with rep-
etition frequencies ranging from low to high fre-
quencies while other methods are restricted to the
size of a prescribed neighborhood. The textural
structures which can be described within a neigh-
borhood are naturally restricted to those which
can be observed in the neighborhood. Hence,
features based on measurements on a neighbor-
hood of �xed size have poor discrimination power
when applied to textural structures not observ-
able within the size of the neighborhood, because
of the wrong scale selected. In general, this size
information is not available. The psychophysical
experiments indicate that there exists frequency
and orientation selectivity in the human visual
system, giving a hint of how this scale problem
can be solved [38], [21]. The scaling problem
has been treated, in image processing, by �lter-
ing with Laplacian �lters of di�erent sizes ([16]
or using di�erent decompositions in Gabor ([27],
[23]), wavelet ([34], [43]) and other basis functions
(see [8], [55]). The orientation selectivity within a
frequency band can be obtained by �ltering the
Laplacian image with a directional cosine �lter
([26]). [8] observed that this is not desirable in
texture analysis because one would like to have
a uniform response at the regions of the image
which have a dominant orientation. [8] proposed

to compute at each level of the Laplacian pyramid
a linear symmetry measure or estimation of the
dominant local orientation to produce the image
features. The number of features is then reduced
by using the Karhunen-Loeve transform as in [10],
and the clustering algorithm proposed in [61] is
applied to these features to obtain a unsupervised
segmentation.

As noticed in [55] statistical methods have in
the past proved to be superior to frequency do-
main techniques [18], [66] due to the lack of lo-
cality in these earlier frequency analysis meth-
ods. But the new joint spatial-spatial frequency
techniques are inherently local in nature and are
based on image representations that indicate the
frequency content in localized regions of the spa-
tial domain. They are able to achieve resolution
in both the spatial and spatial-frequency domain,
and are consistent with recent theories of human
vision. By now, they have characteristics that can
be compared favorably with those of the statisti-
cal methods. In this direction, Lopez and Morel
[47], [49], reformulated the texton theory of Julesz
leading to a single multiscale analysis, governed by
a parabolic partial di�erential equation. Indeed,
they observed that the textons characteristics in-
dicated by Julesz are shape elements based on
curvature and orientation. Considering these ele-
ments multiscale because of the a priori unknown
size of the textons, they concluded that texton
densities are nothing but multiscale curvature and
orientation densities, which have to be computed
using the unique the local, causal, morphological,
homogeneous, isotropic and a�ne invariant scale
space (instead of the usual heat equation associ-
ated with the Laplacian pyramid), introduced and
axiomatically justi�ed in [3] -also proposed in [60]-
. In their experiments, Lopez and Morel [47] used
multiscale curvature densities at each position and
did not take orientation into account.

The main approach we are going to follow in
this paper uses orientation densities but it will
be slightly di�erent. Partly, because of the desire
of constructing a�ne invariant energy functionals
based on the dominant local orientation. Partly
inspired by the discusion in [33] concerning scale
selection in the context of shape from texture. We
are interested in making evident a relation be-
tween dominant orientation and an appropriate
scale. Collecting these ideas, we shall generate an
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oriented texture �eld, also called a representation
of dominant local orientation, computed on adap-
tative intrinsic elliptic neighborhoods which, as
we shall see, give an intrinsic scale addressing the
scale selection problem -therefore, the orientation
densities do not need to be multiscale (a multi-
scale variant will be given at the end of Subsection
3.1)-. Indeed, at each point of the image domain,
we will try to �nd an elliptic neighborhood de-
termined by the texture pattern which represents
in some sense, a particular length scale related
to the texture pattern and to the dominant local
orientation (see Figure 2). From it we construct
the feature channels for a segmentation algorithm.
Several a�ne invariant Mumford-Shah type en-
ergy functionals will be constructed: we propose
to use an a�ne invariant analogue of the second
moment matrix, dominant local orientations or
statistics of them as channels for a Mumford-Shah
type functional. Moreover, the adaptative intrin-
sic elliptic neighborhood we propose will be used
to compute a set of a�ne invariant features based
on Zernike moments. Although the texton doc-
trine of Julesz is basically euclidean invariant we
retrieve the a�ne invariance in all cases by using
the notion of a�ne total variation as introduced
in [6] and a suitable normalization of the image
usual in shape analysis ([25], [37]). For a detailed
account of a�ne invariant multiscale methods, we
refer to [7], where several possibilities for the def-
inition of the channels are discussed and compar-
ative experimental results are given. Euclidean
invariant texture segmentation algorithms based
on the simple and elegant Mumford-Shah type en-
ergy, were proposed in [43], [48], [49].

On the other hand, texture can be used, in par-
ticular, to infer the 3D structure of surfaces in the
scene. If we wish to recover information about the
3D shape of visible surfaces, we must distinguish
the distorting e�ects due to projection from the
properties of the texture on which the distortion
acts. In fact, we can imagine the following two
situations: We have an unique texture pattern on
a surface with di�erent orientation planes, or we
have several di�erent texture patterns. In the �rst
situation, it seems reasonable to accept the strat-
egy of attributing as much as possible of the vari-
ations observed in the image to projection. In the
second case, we face an ambiguous situation. Ei-

ther we interpret them as textures with di�erent
properties or we suppose as above that the maxi-
mum of variation observed in the image is due to
projection e�ects. We shall assume that indeed
the �rst case occurs. In a few words, texture does
not mimic projective e�ects. This permits us to
settle a strategy for the shape from texture prob-
lem which will be described in Section 5. Our ap-
proach to understanding the surface information
contained on a textured image will use the a�ne
invariant intrinsic elliptic neighborhoods and the
a�ne invariant analogue of the second moment
matrix combined with our a�ne invariant segmen-
tation model.

This paper is organized as follows. We intro-
duce in Section 2 a multichannel a�ne invariant
energy model which generalizes the one introduced
in [6] to segment grey level images and which is our
general model to segment textured images. The
following two sections, Section 3 and 4, are de-
voted to introduce several variants of this general
model. In Section 3, we start by reviewing the
dominant local orientation notion. Then, using
the representation of dominant local orientation
as feature space, we construct several energy func-
tionals for texture segmentation and discuss its in-
variance properties. The possibility of using a�ne
invariant moments computed on our intrinsic el-
liptic neighborhood as channels, will be explored
in Section 4. We address in Section 5 the shape
from texture problem. The object of Section 6 will
be the description of the algorithm used to min-
imize the energy functionals and the displaying
of experimental results. The segmentation algo-
rithm is multiscale but we shall show an impor-
tant experimental evidence: studying the number
of regions obtained from the segmentation algo-
rithm with respect to the scale parameter, we ob-
tain that with any value of the scale parameter in
a large interval, the algorithm achieves a correct
number of regions in the segmentation.

2. Texture segmentation by a multichan-
nel a�ne invariant method

In this section we are going to propose an a�ne in-
variant variational model we shall use in this work
to achieve texture segmentation and to retrieve
information about the shape of a textured sur-
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face. The a�ne invariant analogue of Mumford-
Shah functional for grey level image segmentation
was introduced in [6]. Let us adapt it to the
present multichannel segmentation. Since it will
also be useful below, let us review in some detail
the framework introduced in [6].

As usual, let 
 be an open connected set in IR2

whose boundary is a smooth simple Jordan curve
(usually, 
 is an open rectangle). Let g : 
 !
IR+ be the given image to which we associate a
function G with values in feature space, i.e., let
G : 
 ! E be a bounded measurable function
with values in a Hilbert space E representing the
feature space. Recall that a Jordan curve is a
continuous curve c : [a; b] ! IR2 such that for all
t; t0 2]a; b[, c(t) 6= c(t0) if t 6= t0 (a < b). If c(a) =
c(b) the Jordan curve is said to be closed. The
points c(a) and c(b) are called tips of the curve,
all other points in the range of c are interior points.
Let = be the following family of sets

= =
n
B � �
 : B is a �nite union of recti�able

Jordan curves whose interiors are disjoint

and contained in 

o
:

To introduce the admissible class of segmentations
we need the following de�nition.

De�nition 1. . Let u 2 L2(
; E). We say that
u is a cylindrical function in the direction v 2
IR2; v 6= 0, if r < u;' > �v = 0 in the sense
of distributions, for any ' 2 E. We say that u
is cylindrical if u is cylindrical in some direction
v 2 IR2; v 6= 0.

A simple argument shows that u is cylindrical in
the direction v 6= 0 if and only if, after a possible
modi�cation of u in a set with zero measure, u(x+
�v) = u(x) for almost every x and all � 2 [0; 1],
i.e., u is constant on lines parallel to the direction
v. Since u 2 L2(
; E), almost all points x 2 

are Lebesgue points of u. To choose a particular
representative of u we use the following rule: if for
x 2 
 there exists some � 2 E such that

lim
r!0

1

�r2

Z
D(x;r)

ku(y) � �kEdy = 0;

where D(x; r) = fy 2 
 : jjy � xjj � rg, then
we de�ne u(x) = �. Hence when, for a cylindrical

function, we speak of the discontinuity set of u we
mean the discontinuity set of its chosen represen-
tative.

Let

�0 :=
n
u : there existsB 2 = such that u : 
! E

is constant on each connected component of


 nB and u is discontinuous on B
o

�1 :=
n
u : u : 
! E is a cylindrical function

o
:

Let

� = �0 [ �1:

We shall call elements (u;B) of � segmentations.
Function u will be referred to as the segmented
image and its discontinuity set B as the segmen-
tation boundaries or, simply, segmentation. Let
us observe that segmentations in �0 are Mumford-
Shah type segmentations while segmentations in
�1 are a�ne degenerate segmentations. Such a�ne
degenerate segmentations correspond to a under-
lying transformation of the image by a linear map
A with one of its eigenvalues equal to zero.

To introduce the ATV (�), let us de�ne:

De�nition 2. Let �; ~� be two recti�able Jordan
curves. We de�ne the interaction of � and ~� by

Inter(�; ~�) =

Z
�

Z
~�

j� (x)^ ~�(y)j d�(x) d~�(y) (1)

where �; ~� denote, respectively, the arclength pa-
rameters on each curve �; ~� and � (x); ~� (y) denote
the tangent vectors at x 2 �, y 2 ~�, respectively.

For convenience in notation, given u 2 �0, let
us consider B as the set of discontinuity of u and
write (u;B) 2 �0 instead of u 2 �0. If u is in �1,
the discontinuity set of u may be very wild. On
the other hand, it will not play any role in what
follows. But, for a uniform notation below, it will
be convenient to write also B as the discontinuity
set of u and write (u;B) 2 �1 instead of u 2 �1.
We also refer to pairs (u;B) 2 � as segmentations.

We now de�ne the ATV functional. Let

(u;B) 2 �. If (u;B) 2 �0, then B =
NS
i=1

�i where

�i are recti�able Jordan curves whose interiors are
disjoint. We set
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ATV (B) =
NX

i;j=1

Inter(�i; ~�j):

If (u;B) 2 �1, then we set ATV (B) = 0: In any
case, given (u;B) 2 �, we de�ne

E(u;B) =

Z



jju�Gjj2Edx+ �ATV (B) (2)

where � > 0 and we want to minimize it on the
class of segmentations �. As observed in [6], the
ATV functional is a�ne invariant. Indeed, for any
linear map A one has

ATV (A(B)) = jdetAjATV (B): (3)

where jdetAj denotes the absolute value of the
determinant of the matrix A. Moreover, let us
suppose that G is an a�ne invariant quantity in
the following sense:
If g; h : 
 ! IR+ are images such that h(x) =
g(Ax), A being any linear map with detA 6= 0,
and G;H : 
 ! E are the vector features with
values in the Hilbert space E associated to g; h,
respectively, then there exists an isometry U of E
depending on g;A; h such that

H(x) = UG(Ax):

Then, letting u0(x) = Uu(Ax),

Z



jju0(x)�H(x)jj2Edx

=

Z



jjUu(Ax)� UG(Ax)jj2Edx

= jdetAj�1
Z
A


jju(x)�G(x)jj2Edx

which, together with (3), proves the a�ne invari-
ance of Functional (2).
Let us recall that the ATV was not an arbitrary

functional. It is shown in [6] to be the only posi-
tive functional, up to a scaling factor, associating
to each pair of Jordan curves a quantity which is
geometric, a�ne invariant, biadditive and contin-
uous (in the W 1;1 topology of the space of para-
metric curves).
As in [6], we have the following theorem con-

cerning the existence of minimizers for Functional
(2) which can be proved along the lines of [6].

Theorem 1. The functional E attains its min-
imum at some (u;B) 2 � .

On the other hand, recall that, as in [6], the
problem

minfE(u;B) : (u;B) 2 �g; (4)

can be written as

min
B2=

min
u:(u;B)2�0

E(u;B): (5)

Since for each B 2 =,

minfE(u;B) : u such that (u;B) 2 �g; (6)

is attained for

�uB =
X
O

uO�O; (7)

where

uO =
1

jOj
Z
O

G(x)dx 2 E; (8)

jOj denotes the area of the connected component
O and the sum extends to all connected compo-
nents of 
 nB, then Problem (4) is reduced to

minfE(�uB ; B) : B is either in = or is an a�ne

degenerate segmentation and �uB is given

by (7), (8)g.

3. Texture segmentation using the domi-
nant local orientation

As argued in the Introduction, the representation
of dominant local orientations seems to �t to the
physiological discoveries of Hubel and Wiesel [38],
[4]. Dominant local orientations have been used
for texture description [57], texture discrimination
[8],[57], and to retrieve information about surface
orientation and depth ([67], [57], [33]). In all these
cases, they used the same estimate on the domi-
nant local orientation for a textured image.

Consider an image g : IR2 ! IR+. Let us denote
by g(x) the value of g at x 2 IR2. We compute the
gradient of g(x) by using �nite di�erences. We are
interested in giving an estimate of the orientation
of rg(�) (modulo �) at some point x0. In princi-
ple this estimate should be given by some average
of rg(�) in a neighborhood of x0. As pointed out
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in [45], one cannot smooth the gradient vectors
as they tend to cancel each other out at inten-
sity ridges. To avoid such cancellations, estimates
of the dominant local orientation have been de-
velopped in [45], [57], [8], with a common point
of view. These estimates coincide with the one
obtained by the method of moments which, more-
over, works in any dimension. It tries to give an
answer to the following problem. Given the vec-
tors fv1; v2; : : : ; vNg how does one determine the
dominant orientation of this system? The �rst an-
swer could be to sum up these vectors and take the
resulting direction. But there is the danger that
vectors pointing in opposite directions cancel each
other instead of in
uencing each other to produce
a dominant orientation. Therefore, to answer the
previous question we compute the second moment
tensor (or inertia matrix)

M =
NX
i=1

viv
t
i (9)

and propose as average orientation the vector v
minimizing

min
v

tr
�
(M � vvt)2

�
: (10)

Then, we have

Lemma 1. The vector v minimizing (10) is
given by the principal eigenvector of M with normp
�, � being the principal eigenvalue of M .

The proof of this lemma is given in Appendix A.
Coming back to our purposes, by considering a

continuous image g and interpreting vi above as
rg at some point x, the analogous of the matrix
M could be

1

j"(x)j
Z
"(x)

rg(y)rg(y)tdy;

where the integral is taken on a neighborhood "(x)
of x and, for convenience, we divided the integral
above by the area of "(x); j"(x)j. Some authors
use a weighting function !(x) and the matrix

�(g;!)(x) =

Z
IR2

!(x� y)rg(y)rg(y)tdy;

which is called the second moment matrix, taking
its principal eigenvector as the dominant orienta-

tion. In practice w can be a Gauss function. We
refer to Section 5 for connections of the second
moment matrix with Shape from Texture.
The smoothing function !, usually G�, intro-

duces a local scale which is, a priori, unknown.
This could be, in principle, solved by a multiscale
approach. The approach we are going to follow
here will be slightly di�erent. Partly, because of
the desire of constructing a�ne invariant energy
functionals. Partly inspired by the discusion in
[33] concerning scale selection in the context of
shape from texture. At each point x, we try to
�nd an elliptic neighborhood "(x) determined by
the texture pattern in which the histogram is sta-
ble. This neighborhood "(x) represents in some
sense, a particular length scale related to the tex-
ture pattern. With this neighborhood, we com-
pute the matrix

Qg(x) =
1

j"(x)j
Z
"(x)

rg(y)rg(y)tdy

to obtain an estimate of the dominant local ori-
entation at x along the lines above. The actual
construction of "(x) will be explicited in subsec-
tion 3.2. This matrix is the basic tool to construct
a series of energy functionals for texture discrimi-
nation.

3.1. Some energy functionals based on the dom-
inant orientation

In order to explote the previous idea and construct
some features vectors, G, we start by introducing
the de�nition of intrinsic elliptic �-neighborhood
which is at the basis of our a�ne invariant esti-
mation of the dominant local orientation

De�nition 3. (Intrinsic elliptic �-neighborhood).
Let g : 
 ! IR+ be a given image. Suppose that
we have for each point a neighborhood "g(x), a
matrix Qg(x) and a real number �g(x) such that

Qg(x) =
1

j"g(x)j
Z
"g(x)

rg(y)rg(y)tdy (11)

"g(x) =
�
y 2 IR2 : hQg(x)(y � x); y � xi

� �g(x)
	
;

(12)
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where �g(x) has been selected large enough so that
the histogram of g in "g(x) is stable in some sense
to be precised below (see Subsection 3.2). Then
"g(x) is called an intrinsic elliptic �-neighborhood
of the image g at point x.

This notion can be seen like a generalization
in an a�ne framework of the Julesz notion of �-
neighborhood ([39]), which is circular in the orig-
inal de�nition. In the sequel Qg(x) will be called
a�ne invariant intrinsic orientation matrix of the
image g at point x.
Let us, for convenience, use also the notation

"g
�
x; �g(x)

�
to refer to "g(x). We notice that, if

A is any linear map in IR2 with detA 6= 0 and h :
A�1
 ! IR+; h(x) = g(Ax); then we can de�ne
an �-neighborhood for h, "h

�
x; �h(x)

�
; �h(x) and

Qh(x), by

Qh(x) = AtQg(Ax)A (13)

"h
�
x; �h(x)

�
= A�1"g

�
Ax; �g(Ax)

�
(14)

�h(x) = �g(Ax): (15)

Following Julesz, we assume along this sec-
tion the existence of an intrinsic elliptic �-
neighborhood for g at any x. With this on hand,
one can construct several a�ne invariant energy
functionals based on the matrix Qg. Thus, given
the image g : 
 ! IR+ let Qg(x); "g(x); �g(x) be
as above. Let

Qg =
1

j
j
Z



Qg(x)dx: (16)

Let MS2 =
�
A : 2� 2matrix; A = At > 0

	
and

let S =

�
M : 
!MS2 : M =

P
O

�O(x)MO;

MO 2MS2 and the sum extends to all connected

components of 
 n B for some B 2 =
�
. S is the

set of all piecewise constant images whose range
are in MS2. Observe that Qg 2 MS2. Without
loss of generality, we may assume that Qg is in-
vertible. Otherwise, g(x) would be constant on
lines parallel to some direction, that is, g would
be cylindrical.
We propose to minimize the functional

E1(Q;B) =

Z



tr
�
Q�1=2g Qg(x)Q

�1=2
g �Q

�2
dx+

�ATV (B);

(17)

in the set of pairs (Q;B) with Q 2 S; B 2 =: The
dominant orientation corresponds to the principal
eigenvalue of Qg(x). The matrix Qg(x) also con-
tains information about surface shape, as we shall
describe in Section 5.
The matrixQg is used in (17) as a normalization

factor. It plays an essential role to recover a�ne
invariance (see [25], [20]). Indeed, for any linear
map A such that detA 6= 0, and setting h(x) =
g(Ax), x 2 A�1
, then

Qh(A
�1
) = AtQg(
)A: (18)

The identity (18) is the basis of the normalization
theory for images, which permits the introduction
of a�ne invariant quantities associated with usual
euclidean invariant ones. For the sake of com-
pleteness we shall review a little bit more than is
needed. We believe this to be helpful for a better
understanding of the developpements below.
Thus, making abstraction of the actual de�ni-

tion of Qg, let us suppose that with any image
g : A
! IR+ and h(x) = g(Ax), x 2 
, with A as
above, we associate symmetric matrices Mg(A
),
Mh(
) satisfying

Mh(
) = AtMg(A
)A: (19)

Let us observe the �rst simple but useful implica-
tion of (19).

Fact 0: M
�1=2
h (
)AtM

1=2
g (A
) is a rotation ma-

trix. Indeed, from (19)

I =
�
M
�1=2
h (
)AtM1=2

g (A
)
��

M1=2
g (A
)A

M
�1=2
h (
)

�
;

which is a translation of Fact 0.
Let us introduce the following de�nition. For

simplicity we suppose all images de�ned in IR2.

De�nition 4. ([25], [20]) We say that the
matrix A with detA 6= 0 normalizes an image
g : IR2 ! IR if h(x) = g(Ax) is such that Mh = I.

Since Mh = AtMgA, A normalizes g if and only
if AtMgA = I. In that case Mg = (A�1)tA�1.
Writing C = A�1 we see that Mg = CtC. More-
over, any invertible matrix C such thatMg = CtC
permits to construct a matrix A normalizing g. It
su�ces to take A = C�1. In particular:
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Fact 1: M
�1=2
g normalizes g.

The process of normalizing the images was in-
troduced in the context of shape analysis to rein-
force a�ne invariance. Thus, it is not surprising
to �nd it here. Two important and related facts
in the context of normalization are the following:

Theorem 2.

(a) Uniqueness of the normalizing matrix. Given
an image g : IR2 ! IR the matrix A normal-
izing g is unique, up to orthogonal matrices.

(b) Uniqueness of the normalized image. If two
images g, h are related by a linear matrix
A, h(x) = g(Ax), then they belong to the
same normalization class, i.e., if �h, �g are
the normalizations of h, g respectively, then
�h(x) = fUg�g(x) = �g(Ux) for some orthogonal
matrix U .

The proof of these facts is elementary. Let us give
them in Appendix B for the sake of completeness.
Theorem 2 says that the normalization is a well
de�ned and intrinsic process.

Let us prove the a�ne invariance of functional
E1.

Proposition 1. The functional E1 is a�ne in-
variant.

Proof: Let A be a linear map in IR2; g :

 ! IR+; h : A�1
 ! IR+ images related by
h(x) = g(Ax): Let Qh(x); Qg(�x); x 2 A�1
; �x 2

; Qh; Qg be de�ned as in (11); (16). Using (13)
one easily sees that

Qh(A
�1
) = AtQg(
)A

which implies, by Fact 0, that UA = Qh(A
�1
)�

1
2

AtQg(
)
1
2 is a rotation. Hence,Z

A�1


tr
�
Q
� 1

2

h (A�1
)Qh(x)Q
� 1

2

h (A�1
)

�Q�2dx = Z
A�1


tr
�
Qh(A

�1
)�
1
2AtQg(
)

1
2

Qg(
)
� 1

2Qg(Ax)Qg(
)
� 1

2Qg(
)
1
2AQ

� 1
2

h (A�1
)

�Q�2dx = Z
A�1


tr
�
UAQg(
)

� 1
2Qg(Ax)

Qg(
)
� 1

2U t
A �Q

�2
dx =

Z
A�1


tr
�
Qg(
)

� 1
2

Qg(Ax)Qg(
)
� 1

2 � U t
AQUA

�2
dx =

writting Q0 = U t
AQUA; y = Ax; dy = jdetAjdx,

= jdetA�1j
Z



tr
�
Qg(
)

� 1
2Qg(y)Qg(
)

� 1
2 �Q0

�2
dy:

On the other hand, since ATV
�
A�1(B)

�
=

jdetA�1jATV (B); we see that

E1

�
Q;A�1(B)

�
= jdetAj�1E1

�
Q0; B

�
:

Since the map Q ! Q0 = U t
AQUA is a rotation

in the space of symmetric matrices, Q0 describes
the set of all positive de�nite matrices and the
in�mum is the same in both cases.

As we have seen, the main role of Qg was to
reinforce a�ne invariance. But it also plays a role
as a normalization factor with respect to the mag-
nitude of the gradient.

Remark 3.1. To construct an a�ne invariant
energy functional on the basis of the dominant ori-
entation we also need a previous normalization of
Qg(x). Thus, let for each x 2 
; wg(x) be the

eigenvector of Q
�1=2
g Qg(x)Q

�1=2
g associated to its

largest eigenvalue �g(x). To avoid the sign inde-
termination implicit in the de�nition of the princi-
pal eigenvector, we use the map Twg(x) = Re2i� if
wg(x) = Rei�. Then, to each image g we associate
the feature vector G 2 L2[0; 2�], where

G(x; �) =

�
1 if Twg(x) 2 S�
0 otherwise

(20)

where S� is the ray of IR2 of angle �, i.e., S� =
f�ei� : � � 0g. Then, given B 2 =, we associate
the function uB 2 L2[0; 2�] where

uB(x; �) =
X
O

n(O; �)�O(x) (21)

and

n(O; �) =
1

jOj
Z
O

G(y; �)dy; � 2 [0; 2�[;
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the sum in (21) being extended to all connected
components of 
 nB.
Using these statistics of the dominant local ori-

entation, we de�ne the following a�ne invariant
energy functional

E2(B) =
1

2�

Z



Z 2�

0

�
G(x; �) � u(x; �)

�2
d�dx

+�ATV (B):

(22)

Remark 3.2. If we take

kwg(x)k =
�
�g(x)

��1=2
; (23)

we can construct the following a�ne invariant
functional based on the dominant local orienta-
tion

E3(w;B) =

Z



kTwg(x)� wk2dx + �ATV (B);

(24)
where B 2 = and w(x) =

P
O wO�O(x); the sum

being extended to all connected components of 
n
B and wO 2 IR2.

Remark 3.3. The previous functionals are re-
lated to the dominant local orientation and ad-
dress the scale selection problem by using a neigh-
borhood giving an intrinsic scale. Another possi-
bility could be to use a multiscale representation of
local orientation or statistics of them. As observed
by C. Lopez and J.M. Morel ([47]) the textons
characteristics indicated by Julesz are shape ele-
ments based on curvature and orientation. Con-
sidering these elements multiscale because of the
a priori unknown size of the textons, they con-
cluded that texton densities are nothing but mul-
tiscale curvature and orientation densities. And
they proved that there is only one way to com-
pute multiscale curvature and orientation: It is
using the A�ne Invariant Morphological Scale-
Space, introduced and axiomatically justi�ed in
[3] (also proposed in [60]). In their experiments
[47], they used multiscale curvature densities at
each position and they do not take into account
orientation. Now, we shall use this multiscale ori-
entation densities and, in order to obtain the a�ne
invariance property, we also use some normaliza-
tion matrices.
From [3], let g(t; �) be the local, causal, morpho-

logical, a�ne invariant multiscale representation

of g(x), i.e., g(t; x) is given by the unique viscos-
ity solution of

gt = jrgj
�
tdiv

� rg
jrgj

��1=3

(25)

with initial datum g(0; x) = g(x), the given
image. Let us choose a discrete set of scales
tj : j = 0; : : : ;N , with t0 = 0. Moreover, we
suppose that g(tj; �) 2 W 1;2(
 n B) for some
B with H2(B) = 0, where H2 denote the 2-
dimensional Haussdor� measure (for that, it suf-
�ces take g(x) 2 W 1;1(
)). Hence rg(tj; x)
is de�ned almost everywhere in 
. The vectors
frg(tj ; x)gNj=0 are called the multiscale represen-
tation of local orientation of the image g(x). We
associate to it a vector H 2 L2[0; 2�]N+1. Let
Mgj be the matrix

Mgj (
) =
1

j
j
Z



rg(tj ; x)rg(tj ; x)tdx: (26)

Observe that Mgj (
) is a symmetric positive def-
inite matrix, j = 0; : : : ;N . If no confusion arises,
we shall denote Mgj (
) by Mgj . We shall always
assume that Mgj is invertible. Otherwise, there
would be no problem since g(tj; x) would be cylin-
drical.

Let Hj be the function

Hj(x; �) =

�
1 if M

�1=2
gj rg(tj; x) 2 S�

0 otherwise;

and we take

uBj(x; �) =
X
O

uBj(O; �)�O(x); (27)

uBj(O; �) =
1

jOj
Z
O

Hj(y; �)dy 2 L2[0; 2�](28)

where S� is as above. Then one can construct the
a�ne invariant functional

E4(B) =
NX
j=0

1

2�

Z



Z 2�

0

(�uj(x; �)�Hj(x; �))
2d�dx

+�ATV (B):

(29)
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3.2. Determination of the intrinsic elliptic
neighborhood

We are going to give an algorithm to construct
for each x a matrix Mg(x), a radius �g(x) and an
elliptic neighborhood "g

�
x; �g(x)

�
where the his-

togram of g is stable -in some sense to be precised
below- and satisfying (13) � (15). The algorithm
is an iterative one trying to reinforce both condi-
tions (11); (12). This will be the case whenever
the iterative procedure converges. In practice, if
the procedure does not converge, we stay at some
stage of the iterative process and guarantee, at
least, (13), (14), (15). In Figure 2 we display some
intrinsic elliptic �-neighborhoods for some tex-
tured images used in the numerical experiments
displayed in Section 6.

To proceed to the construction, let us precise
our notion of histogram stability. Let g : 
! IR+

be a given image.

De�nition 5. Let M be a positive de�nite
matrix. Let x 2 
; � > 0; B(M;x; �) =

�
y 2

IR2 : hM(y�x); y�xi � �
	
: Let H(g;M; �; �) be

the distribution function of g in B(M;x; �); i.e.,

H(g;M; �; �) =
j�y 2 B(M;x; �) : g(y) � �

	j
jB(M;x; �)j ;

� 2 IR+:

We say that H(g;M; �; �) is stable at the point x
with respect to (M;�) if for any � > 0, there exists
� = �(�; g; x) (not depending on (M;�) ) such that
for any (M 0; �0) with kM �M 0k+ j�� �0j < � we
have

kH(g;M 0; �0; �)�H(g;M; �; �)k2 � �kH(g;M; �; �)k2:

As usual, k � k2 denotes the L2 norm. For simplic-
ity, we shall say that H(g;M; �; �) is stable at x
with the implicit understanding of stability at x
with respect to (M;�).

We shall need the following observation (proved
in Appendix C).

Lemma 2. Let Mn; M 2 MS2 be such that
Mn ! M: Let �n; � > 0; �n ! �: Suppose that

H(g;Mn; �n; �) is stable at the point x 2 
. Then
H(g;M; �; �) is also stable at x.

Now let us introduce the elliptic neighborhood
at the point x 2 
. We suppose that rg(x) is
de�ned a.e. in 
, say in 
 n B for some B with
H1(B) < +1 and that rg(x) 2 L2(
), so that
the following matrix is well de�ned

Q�g =

Z



rg(x)rg(x)tdx 2MS2:

For our purposes it will be harmless to assume
that

Q�g 6� 0:

Otherwise rg(x) = 0 a.e., i.e. g(x) would be a
piecewise constant function in 
nB, case which we
exclude since it could be handled with an energy
functional for grey level segmentation.
For convenience, we extend rg(x) = 0; 8x 2 IR2 n

: Set �0g(x) = +1; "0(x; �0g(x)) = IR2: Set

Q1(g; x) =
1

j
j
Z
IR2

rg(y)rg(y)tdy
�
=

1

j
jQ
�
g

�
:

Set "1(g; x; �) :=
�
y 2 
 : hQ1(g; x)(y � x); y �

xi < �
	
.

Now, we choose � > 0 such that H(g;Q1; �; �) is
stable at x. Two situations are possible at a point
x. Either, there exists a neighborhood N of x such
that Z

N

rg(y)rg(y)tdy = 0; (30)

in which case we de�ne as Ng(x) as the largest
such neighborhood, or for any neighborhood N of
x Z

N

rg(y)rg(y)tdy > 0: (31)

In the �rst case we choose

�g(x) = supf� � 0 : "1(g; x; �) � Ng(x)g (32)

and we set "g
�
x; �g(x)

�
= "1

�
g; x; �g(x)

�
: We can

takeQ1(g; x) asQg(x) so that (12) holds. We shall
see below that (13)-(15) also hold. It is also clear
that H(g;Qg(x); �g(x); �) is stable at x. If we use
(11) to de�ne Qg(x), we would have Qg(x) � 0:
In this case, (11) does not hold, but formula (11)
is not essential for the developments of this case.
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In the second case, to avoid intrinsic neighbor-
hoods reduced to a point, we choose a lower scale
�m at the point x (this quantity �m > 0 can be
�xed constant for all x): Then, we choose

�1g(x) = inff� : � � �m such that

H(g;Q1(g; x); �; �) is stable at xg;
(33)

with the implicit convention that the in�mum is
+1 when the above set is empty, i.e., when the
histogram does not stabilize in the neighborhoods
above. Then "1g

�
x; �1g(x)

�
= "1

�
g; x; �1g(x)

�
:

Observe that j"1g
�
x; �1g(x)

�j > 0: Indeed, for any
� > 0,

B
�
x;

r
�

kQ1(g; x)k
�
\
 � "1(g; x; �): (34)

For that, let y 2 
; ky � xk <
q

�
kQ1(g;x)k

: Then

hQ1(g; x)(y � x); y � xi � kQ1(g; x)kky � xk2 < �
(35)

i.e., y 2 "1(g; x; �): This implies that

B
�
x;

r
�m

kQ1(g; x)k
�
\
 � "1

�
g; x; �1g(x)

�
: (36)

To complete the construction in the second case,
suppose that �1g(x) has been de�ned by (34). We
set

Q2(g; x) =
1

j"1g(x; �1g(x))jZ
"1g(x;�1g(x))

rg(y)rg(y)tdy:

Let "2(g; x; �) =
�
y 2 
 : hQ2(g; x)(y � x); y �

xi � �
	
and de�ne

�2g(x) = inf
�
� : � � �m such that

H(g;Q2(g; x); �; �) is stable atx
	
:

As above one checks that

B
�
x;

r
�

j
j
� �m
kQ1(g; x)k

�2� \ 
 � "2(g;x; �2g(x)):

We set "2g
�
x; �2g(x)

�
= "2

�
g;x; �2g(x)

�
.

Suppose that we already have �n�1g(x), "n�1g
�
x;

�n�1g(x)
�
, Qn�1(g; x) such thatH

�
g;Qn�1(g; x);

�n�1g(x); �
�
is stable at x and we have

B
�
x;

r� �

j
j
�n�2� �m

kQ1(g; x)k
�n�1� \


� "n�1g(x; �n�1g(x)):

Then, we de�ne

Qn(g; x) =
1

j"n�1g(x; �n�1g(x))jZ
"n�1g(x;�n�1g(x))

rg(y)rg(y)tdy

(37)
"n(g; x; �) =

�
y 2 
 : hQn(g; x)(y�x); y�xi � �

	
(38)

�ng(x) = inf
�
� : � � �m such that

H(g;Qn(g; x); �; �) is stable at x
	
:

(39)
Then, set "ng

�
x; �ng(x)

�
= "n

�
g; x; �ng(x)

�
and check that

B
�
x;

r� �

j
j
�n�1� �m

kQ1(g; x)k
�n� \


� "ng
�
x; �ng(x)

�
:

(40)
By de�nition, (12) holds. Let us check (13),
(14), (15). Let us start by the degenerate case
where (30) holds. For that, let A be a linear
map such that detA 6= 0 and h : A�1
 !
IR; h(x) = g(Ax): Let x 2 A�1
; �x = Ax 2 
:
Let Ng(�x);Nh(x) be as above. Then, for any
neighborhood N of �x

Z
A�1N

rh(y)rh(y)tdy

= At

Z
A�1N

rg(Ay)rg(Ay)tdy A

=
At

jdetAj
Z
N

rg(z)rg(z)tdz A;

which implies that Nh(x) = A�1Ng(�x): On the
other hand

Qh(x) =
1

jdetA�1
j
Z
A�1


rh(y)rh(y)tdy
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=
At

jdetA�1
j
Z
A�1


rg(Ay)rg(Ay)tdy A

=
At

j
j
Z



rg(z)rg(z)tdz A = AtQg(�x)A;

"1(h; x; �) = A�1"1(g; �x; �) and

�h(x) = supf� � 0 : "(h; x; �) � Nh(x)g =
supf� � 0 : A�1"1(h; �x; �) � A�1Ng(�x)g = �g(�x):

To consider the nondegenerate case, we observe
the following simple lemma (proved in Appendix
D).

Lemma 3. Let M;M 0 2 MS2 be such that
M 0 = AtMA for some linear map A with detA 6=
0. Let g : 
 ! IR+; h : A�1
 ! IR+ be such
that h(x) = g(Ax). Let x 2 A�1
; �x = Ax: Let
� > 0 and "(�x) � fy 2 
 : hM(y � �x); y � �xi �
�g; "0(x) � fz 2 A�1
 : hM 0(z � x); z � xi �
�g �= A�1"(�x)

�
. Then, H(g;M; �; �) is stable at

�x if and only if H(h;M 0; �; �) is stable at x.

With this lemma it is immediate to see that for
each n

Qnh(x) = AtQng(Ax)A (41)

"nh
�
x; �nh(x)

�
= A�1"ng

�
Ax; �ng(Ax)

�
(42)

�nh(x) = �ng(Ax) (43)

H
�
g;Qng(Ax); �ng(Ax); �

�
is stable at Ax

and consequently (44)

H
�
h;Qnh(x); �nh(x); �

�
is stable at x (45)

where Qng(Ax); Qnh(x); ::: are de�ned as in the
previous construction.
Let us make some comments on the question of

convergence of the sequence above. Under the as-
sumption that krgk1 = supx2
 jrg(x)j < +1;
we have that

0 � Qng(x) � krgk21I;

which implies the precompactness of the set
of matrices

�
Qng(x)

	1
n=1

: But the question of
convergence is still there. Convergence is
an assumption which must be experimentally
checked. If Qng(x); �ng(x); "ng(x; �ng(x)) con-
verge to Qg(x); �g(x); "g(x; �g(x)) then (11)-(15)
are a consequence of (37), (38), (41), (42), (43),
(44) and Lemma 3.

4. Texture segmentation using moments

Moments and functions of moments have since
long been used as features in a number of ap-
plications to pattern recognition. Our ability to
recognize objects independently of their euclidean
motion in 3D space forces us to design methods
for pattern recognition which are invariant under
a�ne transformations. This has been attempted
in several ways. Hu [37] used nonlinear combina-
tions of usual geometric moments to construct a
set of invariants. Later, moments based on bases
of orthogonal polynomials were introduced with
the same purpose [63], [9], [42]. Abu-Mustapha
and Psaltis [1] introduced the notion of complex
moments as a simple way to derive moment invari-
ants. In a few words, equivalent sets of moment
invariants can be de�ned in terms of Zernike poly-
nomials, pseudo-Zernike polynomials, rotational
or complex moments. On one hand, since they
are bases of orthogonal polynomials, most of the
image information can be recaptured by using a
su�ciently large number of image moments. But,
on the other hand, the higher order moments are
more sensitive to noise. A detailed comparative
study of several generating sets of polynomials to
compute moments and their sensibility to noise
can be seen in [62]. The sensivity to noise in-
creases with the order but high orders are neces-
sary for a better representation of the image. In
this section, our purpose is to use the method of
moments to compute locally at the intrinsic ellip-
tic �-neighborhood of each point, a set of a�ne
invariant features which will be used as channels
in an a�ne invariant Mumford-Shah type segmen-
tation functional for texture segmentation. In or-
der to do that, we give a description of Zernike
moments and their properties brie
y summarized.
The reason for selecting them from among the
other othogonal moments is that they possess a
useful rotation invariance property. On the other
hand, as they are de�ned into the unit circle, it
is easy, as we can see below, to de�ne them on
elliptics neighborhoods.

4.1. Zernike moments

Zernike polynomials were �rst introduced by
Zernike in 1934. In [17] we can see the deriva-
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tion of them from the requirement of orthogonal-
ity and invariance properties. The di�erent bases
of moments are in principle equally suited to rep-
resent functions but the orthogonal moments are
better than others in terms of information redun-
dacy ([62]).

The complex Zernike moment of order n with
repetition l for a continuous image function f(x; y)
that vanishes outside the unit circle is de�ned by:

Anl =
n+ 1

�

Z 2�

0

Z 1

0

Vnl(r; �)f(r cos �; r sin �)rdrd�;

(46)
where n � 0, l 2 ZZ, jlj � n and n � jlj even. By
Vnl(r; �) we denote the complex conjugate.

The complex Zernike polynomials are de�ned
by

Vnl(x; y) = Vnl(r; �) = Rnl(r)e
il�; x2 + y2 � 1

with

Rnl(r) =

n�jlj
2X

s=0

(�1)s(n� s)!

s!
�
n+jlj
2 � s

�
!
�
n�jlj
2 � s

�
!
rn�2s

=
nX

k=jlj
n�k even

Bnjljkr
k:

The Rnl(r) functions, called radial polynomials,
satisfy the relations

< Rnl; Rml >=
1

2(n + 1)
�mn; (47)

and fVmng is an orthogonal set. Indeed,

Z 2�

0

Z 1

0

Vnl(r; �)Vmk(r; �)rdrd� =
�

n+ 1
�mn�kl;

(48)
with �mn = 1 if m = n and �mn = 0 otherwise.
Then Zernike moments are the projection of the
image function f onto these basis functions and
they constitute an orthogonal basis of L2(x2+y2 �
1). Moreover, observe that Anl = An;�l and that
they are invariant under rotations.

4.2. An energy functional based on local moment
features

We are going now to construct a set of a�ne in-
variant features based on Zernike moments.
As above, let g : 
! IR+ be a given image. At

each point x 2 
, we consider the elliptic neigh-
borhood "g(x; �g(x)) de�ned in 3.1 and rede�ned
in terms of the matrix Qg by

"g(x; �g(x)) := fy 2 
 :< Qg(y � x); y � x >

� �g(x)g:

For simplicity we write Ng(x) = �g(x)
�1Qg. Then

"g(x; �g(x)) = fy 2 
 :< Ng(x)
1=2(y � x);

Ng(x)
1=2(y � x) >� 1g:

Recall that if A is a linear map with detA 6= 0
and h : A�1
 ! IR+ is given by h(x) = g(Ax),
we have

Nh(x) = AtNg(Ax)A

�h(x) = �g(Ax) (49)

"h(x; �h(x)) = A�1"g(Ax; �g(Ax)): (50)

Since

"g(x; �g(x)) = x+Ng(x)
�1=2D(0; 1);

where D(0; 1) = fz 2 IR2 : jjzjj � 1g, we can ex-
ploit this identity to de�ne the following moments:

mnl(g; x) =

Z
jjzjj�1

Vnl(z)g(x+N�1=2
g (x)z)dz;

(51)
where z = (z1; z2), x = (x1; x2) 2 
 and Vnl(z) are
the Zernike polynomials. Let us check the formula

mnl(h; x) = mnl(g;Ax)e
il�; x 2 A�1
 (52)

for some � related to g, A (hence to h). Indeed,

mnl(h; x) =

Z
jjzjj�1

Vnl(z)h(x+N
�1=2
h (x)z)dz

=

Z
jjzjj�1

Vnl(z)g(Ax+AN
�1=2
h (x)z)dz

=

Z
jjzjj�1

Vnl(z)g(Ax+N�1=2
g (Ax)

N1=2
g (Ax)AN

�1=2
h (x)z)dz:
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Since, by Fact 0 (see Subsection 3.1), UA =

N
1=2
g (Ax)AN

�1=2
h (x) 2 O(2), letting z0 = UAz,

z = U t
Az

0, dz = dz0 this last quantity is equal to

Z
jjz0jj�1

Vnl(U
t
Az

0)g(Ax+N�1=2
g (Ax)z0)dz0:

By the properties of the Zernike polynomials,

Vnl(U
t
Az

0) = Rnl(jU t
Az

0j)eil(�+�)
= Rnl(jz0j)eil�eil� = Vnl(z

0)eil�;

where � denotes the angle associated with the ro-
tation U t

A.
Hence

mnl(h; x) =

Z
kz0k�1

Vnl(z
0)g(Ax+N

� 1
2

g (Ax)z0)dz0

�eil� = mnl(g;Ax)e
il�:

We use the moments mnl to de�ne the following
functional

EZ(fmnlg; B) =
X
n;l

Z



kmnl(g; x)�mnlk2dx

+�ATV (B);

(53)
where mnl(g; x) are de�ned as in (51), B 2 � and

mnl =
X
O

mnl(O)�O;

mnl(O) 2 Cjj , n � 0, l 2 ZZ, jlj � n , n � jlj even,
the sum being extended to all connected compo-
nents O of 
 nB.
Using (52) it is inmediate to see that the Func-
tional (53) is a�ne invariant. The normaliza-
tion with the matrix Ng(x) is needed to use the
Zernike moments on the elliptic neighborhood of
each point and it gives for free the a�ne invariance
of the energy functional.

5. Applications to shape from texture

The image of a slanted textured surface provides
important information about the shape and orien-
tation of the surface. This fact has attracted con-

siderable attention in the last 40 years. Perhaps
the main impetus for this interest was the hypoth-
esis formulated by Gibson [32], which states that
texture is a mathematically and psychologically
su�cient stimulus for surface perception. Based
on this observation, many quantitative methods
for recovery of surface orientation from projective
distorsion of texture have been proposed ([2], [5],
[41], [14], etc).

Witkin [67] pointed out that the foreshortening
e�ect, i.e. the compression of a slanted pattern in
the direction of slant can also be a cue to surface
orientation. Indeed, the image of an slanted circle
is an ellipse and the orientation and eccentricity
of the ellipse indicate the magnitude and direction
of the slant. This e�ect is caused by the angle
between the line of sight and the surface in the
scene. Hence, the foreshortening e�ect can also
be observed in orthographical projection of a pla-
nar surface pattern. Various developpements and
extensions of Witkin's method have been studied
([24], [40], [14], [28], [33], etc.).

To understand how a local texture description
can be interpreted in terms of three-dimensional
surface shape, let us review the surface and view-
ing geometry. For a better description of the as-
sumptions involved, we follow the formulation of
Garding [30], Garding-Lindeberg [33].

Consider a smooth surface S viewed in perspec-
tive projection. The smooth surface S is mapped
by central projection onto the unit sphere � cen-
tered at the focal point which is taken as the ori-
gin. This spherical projection model is equivalent
to the ordinary perspective projection onto a 
at
image plane in the sense that if one of these pro-
jections is known the other can be computed from
it. Recall that the local perspective distorsion of
the projected surface pattern results from two fac-
tors. First the distance and orientation of the sur-
face with respect to the line of sight. Second, the
angle between the line of sight and the image sur-
face. This second e�ect is known as the "position
e�ect". This e�ect depends only on the camera
geometry and it can be eliminated. The main ad-
vantage of the spherical projection model is that
it treats all parts of the visual �eld equally and it
avoids the arti�cial position e�ect.
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Fig. 1. Local surface geometry and imaging model. Let
S be a smooth surface, � the unit sphere, � the tangent
plane to S at some point p in S and F : �! the perspective
backprojection.

Fortunately, in order to estimate the local sur-
face shape from texture, it su�ces to consider the
�rst order terms of the perspective projection at
each image point. Following Garding [30], [33]
we consider a spherical camera mapping a smooth
surface S onto a unit sphere � and let F : �! S
be the perspective backprojection from � to S
(Figure 1 illustrates the basic geometry). Then
F (p) = d(p)p; p 2 �; where d(p) is the distance
of p to the surface S along the direction p. At
each point p 2 �, we consider a local coordinate
system fp; t; bg de�ned by: p is the unit vector in
the view direction, t is parallel to rd(p) (assum-
ing rd(p) 6= 0) and b = p � t. Let Tp�; TF (p)S
be the tangent planes at � at the point p and S
at the point F (p) respectively. Then the tangent
map F�p

F�p : Tp�! TF (p)S

Let ~T =
F�p(t)
kF�p(t)k

; ~B =
F�p(b)
kF�p(b)k

:

The matrix of the map F�p written on the basis

ft; bg; f~T ; ~Bg is

F�p =

�
r=cos � 0
0 r

�
=

�
1=m 0
0 1=M

�
(54)

where r = d(p) and � is the slant of the sur-
face, i.e., the angle between the viewing direction
and the surface normal. The characteristic values
m;M are the inverse eigenvalues of F�p. They de-
scribe how a unit circle in TF (p)S is mapped to
Tp� by F�1�p : It becomes an ellipse with m as mi-

nor axis in the direction of t and M as major axis
in the direction of b. We see how several useful
relations between local perspective distorsion and
surface shape can be derived: surface orientation
is directly related to (m;M) and its eigenvectors
(t; b): The tilt direction, de�ned as the gradient
of the distance from � to the surface along the
wiewing ray is parallel to t, the eigenvector asso-
ciated to the smallest eigenvalue of F�1�p ; m: The
foreshortening is de�ned by the ratio m

M and is re-
lated to surface slant � by the relation cos� = m

M :
Together, slant and tilt determine surface orienta-
tion (up to the sign of tilt, since both t and �t
correspond to the eigenvalue 1=m). Other texture
gradients can be computed from the spatial rate of
change of certain measures derived from F�p (see
[30], [33]).

If the brightness data are available in a pla-
nar image � and the internal camera geometry
is known, then we can compute the mapping
G : � ! � from the image plane � to the view
sphere �. Then A = F �G : �! S maps the im-
age plane onto S and if x 2 �; p = G(x) 2 �; then

A�x = F�p �G�x

If G�x is known, F�p = A�x �G�1�x :
The main tool used in the analysis will be the

a�ne intrinsic orientation matrix introduced in
Section 3, in the same sense that in [33], where
they use the second moment matrix. The inac-
curacies inherent in the measuring process and in
the scale selection are corrected in some sense by
using the intrinsic elliptic �-neighborhood. Let
us mention that di�erent second order descriptors
have been used for similar purposes ([15], [29],
[58], [40], [13], [30]). If h : IR2 ! IR+, the sec-
ond order matrix is de�ned by

�h(x) =

Z
IR2

w(x�y)rh(y)rh(y)tdy; x 2 IR2;

(55)
for some regularizing window w � 0;

R
IR2 w = 1:

Let g be an image on the view sphere �, i.e., g :
�! IR+: Then

h = g �G
G g

�! �! IR+

is the corresponding image de�ned on the image
plane �. Let x 2 � and p = G(x). Then �h(x) is
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given by (55). Observe that for y 2 �; rh(y) =
g�G(y) �G�y = Gt

�yrg
�
G(y)

�
. Hence

�h(x) =

Z
IR2

w(x� y)Gt
�yrg

�
G(y)

�rg�G(y)�t
G�ydy:

In a �rst approximation, G�y = G�x; z = G(y) =
p + G�x(y � x) for y near x (which is reasonable
if w = G� with � ! 0+) and we may write

�h(x) =
Gt
�x

jG�xj
Z
Tp�

w
�
G�1�x (p� z)

�rg(z)rg(z)t
dzG�x:

Writting w0(u) = 1
jG�xj

w
�
G�1�x (u)

�
and

�g(p) =

Z
Tp�

w0(p� z)rg(z)rg(z)tdz; (56)

we have
�h(x) = Gt

�x �g(p)G�x (57)

which holds as a �rst order approximation. This
could be made rigorous by using the exponential
map on a neighborhood of Tp� and some � argu-
ment. A similar formula can be derived from

g = f � F
F f

�! S ! IR
p! F (p)

(we assume that the image brightness on � is pro-
portional to the surface re
ectance). In this case

�g(p) = F t
�p�f

�
F (p)

�
F�p (58)

where

�f
�
F (p)

�
=

Z
TF(p)S

w00
�
F (p)� z0

�
rf(z0)rf(z0)tdz0 (59)

w00(u) =
1

jF�pj w
0
�
F�1�p (u)

�
:

Combining (57) and (58) we see that to estimate
the slant and tilt parameters contained in F�p we
need to estimate �h(x) in the image plane and
some assumptions about the surface re
ectance
pattern re
ected in �f

�
F (p)

�
in order to infer the

structure of F�p.
A simple but useful assumption is to suppose

that �f is proportional to the identity matrix

�f = cI for some c > 0:

This is like saying that the surface texture is
isotropic, i.e., there is no single direction on the
surface texture. With this assumption (58) writes

�g(p) = cF t
�pF�p :

This means that the eigenvalues of F�p are propor-
tional to the square roots of the eigenvalues �1; �2
of �g(p) and the eigenvectors are the same, i.e.,

m � 1p
�1

M � 1p
�2

:

As discussed above, the tilt direction coincides
with the eigenvector associated to the maximum
eigenvalue �1 and the slant is given by

cos� =
m

M
:

A further assumption is required to exploit for-
mula (57). Thus, we assume that the focal dis-
tance tends to +1 and we may assume that
G�x = I: Hence

�h(x) = �g(p)

and, under the previous assumptions, we are able
to extract from the second order matrix useful in-
formation concerning the shape of the surface S.
Of course, in many cases these assumptions are vi-
olated and other methods are required (see [33]).

With this excursion in the shape from texture
analysis and the developpements in the previous
sections, it is not surprising if we use the func-
tional

E(�;B) =

Z



tr
�
��1=2g �g(x)�

�1=2
g � �

�2
dx

+�ATV (B);

(60)
with purposes of computing the slant and tilt pa-
rameters from an image g(x) where �g(x) is the
second order matrix given by (55), �g being a nor-
malization matrix given, for instance, by

�g =
1

j
j
Z



rg(x)rg(x)tdx:
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In practice, we use as matrix �g(x) the particular
matrix

�g(x) = Qg(x) =
1

j"g(x)j
Z
"g(x)

rg(y)rg(y)tdy;

which is related to the particular length scale
given by the intrinsic elliptic �-neighborhood.
Summarizing our strategy:

1. We compute the matrix �g =
1
j
j

R



�g(x).

2. We minimize E
�
�;B

�
on the set of matrix

functions �(x) =
P
O

�O�O(x) with �O 2
MS2; B 2 =; and the sum in �(x) is extended
to all connected components of 
 nB.

4. We use the matrix functions �
1=2
g ��

1=2
g to

compute the slant and tilt at each region O
of the segmentation as described above. The
experiments displayed in Section 6 show that
this strategy permits to recover in an e�cient
way surface information.

6. Numerical analysis and experiments

This section is devoted to give the numerical anal-
ysis and to display several experiments. The tex-
tured images used in the experiments are, most of
them, compositions of natural textures: Figure 3
and Figure 8 show a composition of three di�er-
ents wallpaper textures. Figure 13 displays a com-
position of three di�erent types of cork. Figure 12
has been obtained by photographying a pullover
(with just one texture) on a pyramid with four
sides. Finally, Figure 5 is a composition of a piece
of cheetah leather on a �eld of grass.

All input images are gray level images of 128�
128 or 256 � 256 pixels size with eight bits by
pixel. The results have been obtained using soft-
ware written in C programming lenguage on the
UNIX operating system running on a IPC SUN
workstation and we have used functions of the
software MEGAWAVE (author: J. Froment). For
a given image, the output of the algorithm con-
sists of the segmentation boundaries and the su-
perposition of the original image together with the
segmentation boundaries. The segmentation plots
shows how the underlying segmentation �ts with

the real regions of the texture image, both, alone
and superposed to the original image.

The original image and the number of desired
regions (or, equivalently, the �nal scale parame-
ter) are the only variable inputs for the algorithm
and each functional. The experiments displayed
correspond, in general, to an initial partition of
the image in regions of size 1 � 1 pixels. One can
also take a grid of 2� 2 or 4� 4 pixels size, which
makes the algorithm faster.

In the numerical approach, a segmentation,
B, consists of a �nite union of piecewise
a�ne Jordan curves with disjoint interiors to-
gether with a piecewise constant vector func-
tion, noted uB : 
 ! IRp, p 2 IN , such
that uB(x) =

P
O�
nB

uB(O)�O(x) with uB(O) =

(uB1 (O); : : : ; u
B
p (O)), u

B
i (O) 2 IR obtained from

Gi where G = (G1; : : : ; Gp) is the feature vec-

tor. We want to �nd numerically the pair (�u
�B ; �B)

where the minimum (in a certain sense) of each
energy functional is attained.

We can express the energy functional (2) by

E(uB; B) =

pX
i=1

RX
k=1

Z
Ok

(uBi (Ok)�Gi(x))
2dx

+�ATV (B)

(61)

where:

� B is the set of piecewise a�ne Jordan curves
with disjoint interiors that de�nes the discrete
segmentation.

� fOkgk denotes the set of connected compo-
nents or regions of 
 nB.

� R is the number of regions.
� G is the feature vector.
� uBi (Ok) is the mean value of Gi in the region

Ok:
� ATV (B) denotes the A�ne Total Variation of

B. Since B is made of a �nite union of piece-
wise a�ne curves f�lg with disjoint interiors,
we may write

B =
[

finite

�l:
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Then, we may express the second term in the
functional as

ATV (B) =
X

�l;�p2B

Inter(�l;�p):

Our plan, in this section, is the following. The
discretization of the ATV term of the functional
(61) is explained in subsection 6.1 and, in order
to describe the discretization of the feature term,
we detail in 6.2 the algorithm for the elliptic �-
neighborhood construction (de�ned in subsection
3.2). Subsection 6.3 is devoted to the quantiza-
tion of the feature vectors corresponding to the
functional E1, described in Section 2 (dominant
local orientation), and the functional, EZ , based
on Zernike moments (described in Section 4). To
�nish subsection 6.3, we display the shape from
texture experiments. Finally, in subsection 6.4,
we describe the segmentation algorithm and the
data structure used in the numerical experiments.

6.1. Discrete approximation of the ATV term

Let us recall the simple numerical scheme to com-
pute the ATV of a set of discrete curves intro-
duced in [6]. The ATV concept is based on the
Interaction between two curves �1;�2 which is de-
�ned by

Inter(�1;�2) =

Z
�1

Z
�2

j�1(x)^�2(y)jd�1(x)d�2(y):
(62)

Discretizing this term may lead to expensive com-
putations and, in any case, to an accumulation of
errors. For that reason and taking into account
that the curves, as boundaries of regions which
are made of pixels, are polygonal curves made of
small horizontal and vertical segments we decide
to favour a �nite number of �xed directions and
we count the number of those segments folding
over each one of these directions.
Thus, let d1; � � � ; dn be a �nite number of direc-

tions in the plane. Each direction di may be repre-
sented as a line segment with speci�ed magnitude
and direction. Then, we compute the number mi

of ocurrences of the direction di in the boundary
of a region. Hence, each boundary � will be de-

termined by n integer values, m1; � � � ;mn. The
numerical values of the magnitude jdij; 1 � i � n,
depend on the grid size we consider in the ini-
tial segmentation. That is, we initialize the re-
gion growing algorithm with a initial segmenta-
tion which is (see Subsection 6.4), simply, a grid
on the image we want to segment, whose initial re-
gions are the cells of the grid, small squares of size
D�D (with D 2 IN , for example, D = 1; 2 or 4).
Then, in the numerical experiments displayed in
the sequel we have used the next eight directions:

d1 = D(1; 0); d2 = D(0; 1);
d3 = D(1; 1); d4 = D(�1; 1);
d5 = D(1; 2); d6 = D(�1; 2);
d7 = D(2; 1); d8 = D(�2; 1);

(63)

where D(x; y) represents the product of D by the
vector (x; y).
Now, let �1 and �2 be any two curves and let

d1; � � � ; dn be the given directions. According to
(62), we de�ne the discrete Interaction of �1 and
�2 by

Interd(�1;�2) =
nX
i=1

nX
j=1

m1
im

2
j jdijjdjjj sin(di; dj)j;

where fm1
i gi and fm2

i gi are the values correspond-
ing to �1 and �2, respectively.

6.2. The elliptic �-neighborhood construction

In [39], Julesz de�ned the �-neighborhood as the
neighborhood in which di�erences in texton den-
sities (numbers) are determined and texton gradi-
ents computed, but he did not indicate how can
they be computed from grey level images of nat-
ural scenes. We proposed in subsection 3.2 to
construct what we called "the intrinsic elliptic �-
neighborhood" at each point of the image domain.
It is the appropriate neighborhood on which we
compute the local texton features. We describe,
in this subsection, an algorithm to compute the
intrinsic elliptic �-neighborhood. The numerical
experiments that we display in the next subsec-
tions show that, with texture features extracted
from this neighborhood, one retrieves faithfully
the homogeneous texture regions and recovers the
shape from texture information in natural scenes.
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Following the construction in subsection 3.2, the
numerical algorithm which gives an elliptic neigh-
borhood of each pixel where the histogram of the
discrete image is stable and satis�es (13)-(15), is
an iterative algorithm trying to reinforce both con-
ditions (11), (12). Related to the notion of his-
togram stability given in subsection 3.2 �see Def-
inition 3.2�, let us precise the discrete notion we
shall use. Le M be a positive de�nite matrix. Let
x 2 
. Let us denote for each � > 0

"(x; �) = fy 2 IR2 :< M(y � x); y � x >� �g:

Let us note by H("(x; �); �) the distribution func-
tion of the given image in "(x; �). Let � > 0 be
�xed. We say that H("(x; �); �) is stable at the
pixel x (with respect to "(x; �)) or that "(x; �) ver-
i�es the Histogram Stabilization Criterion -HSC
in short- if for any � > 0, there exists � = �(�; x)
such that for any �0 > 0 with �("(x; �)�"(x; �0)) <
� we have

255X
�=0

(H("(x; �0); �)�H("(x; �); �))
2

� �

255X
�=0

H("(x; �); �)2:

In this case, we say that HSC("(x; �); "(x; �0)) is
satis�ed.
Let us describe the discrete iterative process

giving the elliptic neighborhood at a pixel x 2 
.
Let x 2 
 and � > 0. Let �m > 0 be �xed rep-
resenting the lower scale �see 3.2 �. We start
at step 1 of the iterative process with a disk with
radius equal to �m. More precisely:

Step 1. Set

Q1(x) =

�
��1m 0
0 ��1m

�

and "1(x; �) = fy 2 
 :< Q1(x)(y � x); y � x >�
�g, � > 0.

Now, we choose �see details below�
�1(x) = inff� : � � �m such thatH("1(x; �); �)

is stable at xg:

Finally, take "1g(x; �1(x)) = "1(x; �1(x)) as the
elliptic neighborhood at the point x corresponding
to step 1.

Step n (n � 2). First, compute

Qn(x) =
1

j"n�1;g(x; �n�1(x))jZ
"n�1;g(x;�n�1(x))

rg(y)rg(y)tdy:

In fact, we compute an approximation to the ma-
trix Qn(x), called again Qn(x), given by

Qn(x) =
1

Card("n�1;g(x; �n�1(x)))X
y2"n�1;g(x;�n�1(x))

rg(y)rg(y)t;

where the discrete approach to the gradient of g
is computed by using �nite di�erences.

Now, set "n(x; �) = fy 2 
 :< Qn(x)(y � x); y �
x >� �g; � > 0. Then choose

�n(x) = inff� : � � Cn�m such thatH("n(x; �); �)
is stable atxg;

(64)

where Cn is a positive constant selected in some
way to be precised below. Finally, we set
"ng(x; �n(x)) = "n(x; �n(x)).

Let us describe the algorithm to compute �n(x)
as given by (64). Suppose that we have, at a given
step n of the process, the positive de�nite matrix
Qn(x) and the familly of neighborhoods "n(x; �)
depending on � > 0. All of these elliptic neighbor-
hoods have center at x and the same major-axis
orientation. If we denote by �1;n, �2;n the eigen-

values of Qn(x), then
q

�
�2;n

and
q

�
�1;n

are the

major-axis and minor-axis of "n(x; �) and its area
is equal to ��p

�1;n�2;n
.
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Fig. 2. Some intrinsic elliptic �-neighborhoods. The elliptic neighborhood for points in the same texture have approx-
imately the same major-axis orientation and the same ratio between the major and minor-axis. But for pixels near the
boundary between two textures, the associated neighborhoods are, unfortunately but obviously, slightly di�erent from the
other ones associated to interior points in the same texture.

Choose � = Cn�m where Cn > 0 is such that

j"n(x;Cn�m)j = ��2m: Then proceed to increase

it by growing slowly the major-axis or/and the

minor-axis until the associated "n(x; �) satis�es

the Histogram Stabilization Criterion. To be more

precise, let us use the notation "n(x; an; bn) to re-

fer to "n(x; �) where an =
q

�
�2;n

and bn =
q

�
�1;n

are the major and minor-axis of the elliptic neigh-

borhood "n(x; �), respectively, if �1;n � �2;n.

Then, the algorithm we use to compute �n(x) and

"ng(x; �n(x)) can be summarized as follows:

(a) Set Cn = �m
p
�1;n�2;n and consider

"n(x;Cn�m) -with area equal to ��2m-. Set

"n(x; an; bn) = "n(x;Cn�m).

(b) Check if HSC("n(x; an; bn); "n(x; an+1;~bn))

is satis�ed, where ~bn is such that
~bn

an+1
= bn

an
.

If it is the case, set �n(x) = Cn�m, "ng(x; �n(x)) =

"n(x; an; bn) and stop the process.

Otherwise, check ifHSC("n(x; an; bn); "n(x; ~an; bn+
1)) is satis�ed, where ~an is such that bn+1

~an
= bn

an
.

If it is the case, set �n(x) = Cn�m, "ng(x; �n(x)) =
"n(x; an; bn) and stop the process. Otherwise,

(c) Put a�n = ~an, b
�
n = bn + 1 and start again at

step (b) with "n(x; a
�
n; b

�
n) instead of "n(x; an; bn).

Remark 7.1. Let us note that, in the k�th step
of the process (b)-(c), we take � = � an

bn
(2bn+2k�

1). Obviously, if � > 0 is big enough, we obtain a
stabilization of the histogram in a small number
of steps of the process (b)-(c). For instance, in
the numerical experiments showed in subsection
6.3, we take � = 0:01 and we get the stabilization
with k small, k = 2; 3 or 4 (depending on the kind
of texture and on the point in the texture). Of
course, if � is large, there is less accuracy in the
later computation of texton densities in the elliptic
�-neighborhood, but the algorithm is faster.
Figure 2 above show some neighborhoods asso-

ciated with the indicated points for some textured
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images used in the numerical experiments. We can
observe how the elliptic neighborhood obtained for
points in the same texture have approximately the
same major-axis orientation and the same shape
(that is to say, the same ratio between the major
and minor-axis). One can observe that for pixels
on the boundary of a texture the associated neigh-
borhoods are slightly di�erent from the other ones
associated to interior points in the same texture.
This last fact can be a drawback for a correct lo-
calization of the boundaries between di�erent tex-
tures. This fact is more accentuated in textured
images with a very high contrast of grey level. Fi-
nally, let us remark that the computations of the
neighborhood at each point are highy paralelliz-
able and could be used in real-time image analysis
since they utilize only elementary functions.

6.3. Discretization of the feature vector

In this subsection we describe the way we com-
pute the texture and surface shape features intro-
duced above, that is, the way we compute from
the original image g : 
 ! IR+ a feature vector
G : 
! IRp; G = (G1; :::; Gp) for some p 2 IN to
be used in the segmentation process.

Models based on dominant local orientation

Suppose that we have, for each pixel x in 
,
the intrinsic elliptic �-neighborhood and the sym-
metric positive de�nite matrix computed with the
algorithm detailed in 6.2. For simplicity, let us
forget about the subindices and denote them by
"g(x) and Qg(x), respectively. Let us consider the
energy functional (17) introduced in Section 3

E1(Q;B) =

Z



tr
�
Q�1=2g Qg(x)Q

�1=2
g �Q

�2
dx

+�ATV (B);

where the normalization matrix

Qg =
1

j
j
Z



Qg(x)dx;

is assumed to be invertible (otherwise, we de�ne

Q
�1=2
g = Id), and Q =

P
O�
nB

MO�O(x); MO 2

MS2 =
�
A : 2 � 2matrix; A = At > 0

	
. Let us

recall that the matrix Q
�1=2
g plays an important

normalizing role in two senses: both to guaran-
tee the a�ne invariance of the functional and to
normalize the gradient e�ects.
If we denote by�

a11(x) a12(x)
a12(x) a22(x)

�
(65)

the matrix product Q
�1=2
g Qg(x)Q

�1=2
g and we set

Q =
X

O�
nB

�
bO11 bO12
bO12 bO22

�
�O(x);

then

tr
�
Q�1=2g Qg(x)Q

�1=2
g �Q

�2
=

X
O�
nB

�
(a11(x)� bO11)

2

+2(a12(x)� bO12)
2 + (a22(x)� bO22)

2
�
�O(x);

and the functional to be minimized can be written
as

E1(Q;B) =
4X
i=1

RX
k=1

Z
Ok

(Gi(x)� ui(Ok))
2dx

+�ATV (B);

where G1(x) = a11(x), G2(x) = G3(x) = a12(x),
G4(x) = a22(x), x 2 
, u1(Ok) = bOk

11 u2(Ok) =
u3(Ok) = bOk

12 u4(Ok) = bOk

22 , Ok 2 
 n B and R
denotes the number of regions. Notice that in the
present case the number of channels p (or dimen-
sion of the feature vector G) is equal to 4.
Summarizing, the algorithm we use to compute
the feature channels is the following.

� First, compute the discrete approximation of
the matrix Qg, which we denote again by Qg,
given by

Qg =
1

Card(
)

X
x2


Qg(x)

where the sum extends to all the pixels x in
the discrete domain 
.

� Second, compute Q
�1=2
g . If jQgj = 0, take

Q
�1=2
g = Id.
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Fig. 3. Left: original image. Center: segmentation boundaries obtained from E1. Right: segmentation superposed original
image.

Fig. 4. Left: Original image. Center: segmentation boundaries obtained from E1. Right: segmentation superposed original
image.

Fig. 5. Left: original image. Center: segmentation boundaries obtained from E1. Right: segmentation superposed original
image.
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� Third, compute, for all x 2 
, the matrix

product Q
�1=2
g Qg(x)Q

�1=2
g , noted as in (65).

� Finally, set G1(x) = a11(x), G2(x) = G3(x) =

a12(x) and G4(x) = a22(x). and use the min-

imization algorithm of subsection 6.4.

In Figure 3 and Figure 4 above we can observe

two textured images discriminated minimizing the

previous functional.

Figure 5 display an experiment using the previ-
ous functional where the input image is a piece of
cheetah leather on a �eld of grass.
In the next �gure, Figure 6, we present an ex-

periment to test the a�ne invariance of the E1

functional. First we apply to the original image
displayed in Figure 3 a linear map whose matrix

is

�
2 0
0 1=2

�
to get a new image. Figure 6 display

the results obtaining with the functional E1 over
this new image.

Fig. 6. Right: segmentation superposed original image. Left: segmentation boundaries obtained from E1.

Figure 7 below shows an example of texture discrimination using the functional E2 described in remark
3.1.

Fig. 7. Left: original image. Center: segmentation boundaries obtained from E2. Right: segmentation superposed original
image.

Functionals based on Zernike moments.

Recall that the functional based on Zernike mo-

ments is de�ned by

EZ(fmnlg; B) =
X
n;l

Z



kmnl(g; x)�mnlk2dx

+�ATV (B)

(66)

where, the moments mnl(g; x) are based on the

intrinsic elliptic neighborhood rede�ned in terms

of the matrix Qg, "g(x; �g(x)) := fy 2 
 :<

Qg(y � x); y � x >� �g(x)g. We take

mnl(g; x) =

Z
kzk�1

Vnl(z)g(x+N�1=2
g (x)z)dz;

(67)
where z = (z1; z2), x = (x1; x2) is in the domain

 and Ng(x) = �g(x)

�1Qg is the normalization
matrix needed to reinforce the a�ne invariance of
the functional we use. For each n � 0, l 2 ZZ, jlj �
n and n � jlj is even and Vnl(z) are the complex
Zernike polynomials

Vnl(z) = Vnl(r; �) = Rnl(r)e
il�; x2 + y2 � 1:

(68)
Then, the functional (66) can be written
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Fig. 8. Left: Original image. Center: segmentation boundaries obtained from EZ . Right: segmentation superposed
original image.

Fig. 9. Left: Original image. Center: segmentation boundaries obtained from EZ . Right: segmentation superposed
original image.

EZ(fmnlg; B) =
NX
n=0

nX
l=�n

n�jlj even

RX
k=1

Z



kmnl(g; x)�

mnl(Ok)k2dx+ �ATV (B)

where N is a �xed integer. Replacing integrals

by summations and taking the real and imaginary

parts of mnl(g; x) in (67)

Re(mnl(g; x)) =
X
z1

X
z2

Rnl(r(z)) cos(l�(z))g((x1; x2)

+N�1=2
g (x)(z1; z2));

Im(mnl(g; x)) =
X
z1

X
z2

Rnl(r(z)) sin(l�(z))g((x1; x2)

+N�1=2
g (x)(z1; z2));

where z21 + z22 � 1, we associate with g a set
of Zernike features G. By virtue of (67) and
(68) we notice that mnl(g; x) = mn;�l(g; x), so
that Im(mn;�l(g; x)) = �Im(mnl(g; x)). Thus
we can concentrate on mnl(g; x) with l � 0
as far as the de�ned Zernike features are con-
cerned and because of Zernike polynomials con-
tains 1

2 (N+1)(N+2) linearly independent polyno-
mials of degree � N , we compute 1

2 (N+1)(N+2)
di�erent features. Thus, the feature vector G, for
a �xed N , takes values in IR

1
2 (N+1)(N+2). The Gi

components are the real or imaginary parts of the
moments mnl(g; x), 0 � n � N , l � 0 and n � l
even. Figure 8 and Figure 9 show two numeri-
cal results obtained from the texture segmentation
algorithm (see subsection 6.4) when the previous
functional is applied. The number of moment ba-
sis used in the experiments is 4.
Remark: If we only require euclidean invariance,
we can compute the Zernike moments mnl in (67)
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Fig. 10. Left: Original image. Center: segmentation boundaries obtained from the euclidean features. Right: segmentation
superposed original image.

on a circular neighborhood of each point in the

image domain

mnl(g; x) =

Z
kzk�a

Vnl(z=a)g(x+ z)dz;

and/or use in the functional the euclidean length

instead of the ATV term. Figure 10 above show

a numerical experiment using these euclidean fea-

tures, where the number of moment basis used in

the experiment is 4

Obviously, we can construct for each one of the

other functionals its analogue euclideant invariant

functionals (we refer to [7] for a detailed account

of these).

Shape from Texture.

In order to obtain information about the shape

of a 3D surface from a single image �or, more

speci�cally (see Section 5), in order to extract the

slant and tilt parameters� we use the a�ne intrin-

sic orientation matrix computed by the algorithm

detailed in 6.2. We prefer to use this matrix in-

stead of

�g(x) =

Z
IR2

w(x� y)rg(y)rg(y)tdy; x 2 
;

(69)

with w a Gauss kernel, in order to guarantee a�ne

invariance against the perspective a�ne distorsion

caused by the perspective projection (assuming

the focal distance f ! +1) and to avoid the

problem of scale selection usual in the context of

shape from texture. Thus, we use the particu-

lar length scale given by the intrinsic elliptic �-
neighborhood "g(x) and the matrix

�g(x) = Qg(x) =
1

j"g(x)j
Z
"g(x)

rg(y)rg(y)tdy;

and we segment the image using the a�ne invari-
ant energy functional

E(�;B) =

Z



tr
�
��1=2g �g(x)�

�1=2
g � �

�2
dx

+�ATV (B);

(i.e., E1) in order to extract the regions in the im-
age domain 
 with a homogeneous surface shape
and to estimate its slant and tilt.

Brie
y, the algorithm is as follows

� First, compute the feature vector and min-
imize the functional E using the algorithm
given above for the functional E1. We ob-
tain a local minimum (��; �B) with �B made
of a �nite union of piecewise a�ne Jordan
curves with disjoint interiors and ��(x) =P

O ��O�O(x) with ��O 2 MS2, the sum be-
ing extended to all connected components of

 n �B.

� Second, compute �
1=2
g and �

1=2
g ���

1=2
g =P

O �
1=2
g ��O�

1=2
g �O.

Now, for each region O 2 
 nB,
� Compute the maximum and minimum eigen-

values of the matrix product �
1=2
g ��O�

1=2
g . Let

us denote them, respectively, by �1;O; �2;O.
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Compute also the eigenvector associated to

the maximum eigenvalue �1O.

� Compute the slant ��O� and tilt ��O� pa-

rameters given by

cos �O =

s
�2;O
�1;O

and tO = (cos �O; sin �O)

where tO is the unit eigenvector associated to

�1;O.

� Finally, for each region O 2 
 n �B, estimate

the local surface normal, given by (see Figure

11)

nO = (sin�O cos �O; sin�O sin �O;� cos �O):
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Fig. 11. Consider a coordinate system in IR3 in such a
way that the x,y-axis coincide with the coordinate system
on the image plane, and let � be the angle between the
z-axis and the normal vector to the surface (i.e., the slant).
The angle of tilt, � , is the angle between the projection of
the normal and the x-axis.

Fig. 12. Shape from texture information. Left: original image. Center: original image with the boundaries. Right:
segmentation boundaries with the estimated surface orientations.

Fig. 13. Shape from texture information. Left: original image. Center: original image with the boundaries. Right:
segmentation boundaries with the estimated surface orientations.

An experimental result for an image of a 3D-
shape made of a same texture with di�erent orien-
tations planes is presented in Figure 12 and exper-

iments recovering the shape from texture informa-
tion in images where several textures are presents
are displayed in Figure 13. In the �gures the sur-
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face orientation of each region is indicated graphi-
cally by the intrinsic elliptic �-neighborhood cor-
responding to such region (computed from mean
a�ne intrinsic orientation matrix of such regions),
with and attached needle parallel to the surface
normal.

6.4. Optimization strategy. Segmentation multi-
scale algorithm

Obviously, it is not possible to �nd directly the
global minimum of the energies de�ned in the pre-
vious sections by examining the whole set of pos-
sible segmentations. The principle of the compu-
tational method we use consists in generating lo-
cal transformations of a given segmentation of the
textured image keeping the ones which reduces the
energy (lower energy means improvement of the
segmentation). The tool to produce this trans-
formation is the merging of adjacent regions ac-
cording to a region growing algorithm. This sim-
ple segmentation tool applied to a Mumford-Shah
type energy functional, is enough to compute a
local minimum of it and to do the job of most of
the classical segmentation tools.
Indeed, after the multiscale formalization of im-

age segmentation given by [44] (see also [43]), it
is clear which should be the kind of segmentation
algorithm to be used: a region growing algorithm.
The criterion for region "merging" would be one
of the Mumford-Shah type energy functionals pro-
posed. Then, two regions of a given segmentation
will be merged if and only if the energy of the re-
sulting segmentation decreases. This leads to a
fast algorithm with a causal structure -see below-.
Let us recall that, given the set of boundaries

B, the corresponding minimum uB of E(uB; B) is
completely de�ned by the fact the value of the uBi
coordinate on each connected component of 
 nB
is equal to the mean value of Gi on this connected

component. Therefore, we shall assume that with
each B is associated this unique uB and we shall
write in this case E(B) instead of E(uB ; B) and
u instead of uB .
The concept of 2-normal segmentation syn-

thetizes the concept of optimal segmentation we
are looking for, and it lays on the basis of the com-
putational method we use. In fact, if we follow the
main idea of the region growing methods (see ref-
erences [69] and [35]), we shall see that what they
compute is precisely a 2-normal subsegmentation
of a �ne initial segmentation, obtained by recur-
sive merging. Let us recall from [51] this concept.

De�nition 6. A segmentation B is called 2-
normal if, for every pair of neighbouring regions
Oi and Oj , one has

E(B) � E(B n @(Oi; Oj)) (70)

where @(Oi; Oj) denotes the common boundary of
Oi and Oj .

Then, if B is 2-normal, (70) implies the inequality:

2�
X
�2B

Inter(@(Oi; Oj);�) � �ATV (@(Oi; Oj))

� jOijjOjj
jOij+ jOj j

pX
k=1

(uk(Oi)� uk(Oj))
2

(71)
where uk(Oi); uk(Oj) are, respectively, the mean
values of Gk in Oi; Oj . We call (71) the Merg-
ing Criterium. We decide to remove the com-
mon boundary @(Oi; Oj) of Oi and Oj if (71) is
not satis�ed. By repeating this step, that is, by
comparing the balance of energy for deciding to
join any two neighbour regions, we �nally get a
2-normal segmentation; a segmentation where no
further elimination improves the energy.
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Fig. 14. The graph on the left corresponds to Figure 4. At right, graph corresponding to Figure 7. In the horizontal axis,
we represent the scale parameter � and, in the vertical one, the number of regions. The largest valley corresponds to the
three main regions of the original images.

The minimizing algorithm is applied in a multi-
scale framework with a causal structure. In other
terms, it will not only compute one segmenta-
tion, but a hierarchy of segmentations from �ne
to coarse scales �. Starting at the �nest level of
scale, and iteratively passing from one level to the
next coarser level, the minimization algorithm is
performed in such a way that the output of the
process at each level is used as an input for the
next level. Moreover, the coarser segmentations
will be deduced from the �ner ones by "merging"
operations, with a causal structure for the compu-
tation (see [44]). The scale parameter � in each
functional can be interpreted as a measure of the
"amount of boundary" in the image: if � is small,
we allow for many boundaries in the segmentation.
In this way, we will have the "causality property":
if � > �0, then the boundaries provided by the
algorithm for � are contained in those obtained
for �0 and the regions of the segmentation asso-
ciated to � are the unions of some of the regions
obtained for �0 ([44]). In practice, for each func-
tional, we consider an increasing sequence of pa-
rameters (e.g. f�kgk�1) and seek for a sequence
of 2-normal segmentations (uk; Bk) relatively with
respect to the energy

E�;k(Bk) =

Z



kuk �Gk2 + �kATV (Bk):

We de�ne recursively a sequence (uk; Bk) for k =
1; 2; : : :, by the following property: (uk+1; Bk+1)

is obtained from (uk; Bk) by merging all possible
pairs of regions of 
 n Bk. Then, the multiscale
algorithm may be summarized as follows:

� (A) Start at the �nest level, k = 0, with a
partition of the image in regions of equal size
D �D, where D = 1; 2 or 4, usually.

� (B) At each level k, merge all possible regions
obtained in the segmentation from level k �
1 if the merging produces an energy decay.
Algorithmically,
1. - Consider a region. For each one of its

boundaries consider the adjacent region. If
the merging produces a lower energy, pro-
ceed to merge and update the data struc-
ture.

2. - Iterate until all the regions from the list
of regions have been scanned and no other
merging is possible.
After this step a 2-normal subsegmenta-
tion Bk of the initial segmentation for the
scale parameter �k is achieved.

� (C) Stop if the last level k = p has been
reached or if there is just one region left or
if the desired number of regions is reached.

If the discrimination is successful (e. g., the re-
gions obtained correspond approximately to the
textures location) one can say that the used chan-
nels are able to discriminate the given textures.
Let us observe that the stopping criterion is the
number of regions. That is, in the numerical ex-
periments, we choose a �nal number of regions
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and we allow that the scale parameter � grows
until this number of regions is reached. Anyway,
we have observed an important experimental evi-
dence: the live expectancy of a signi�cative region
is very large with respect to the scale parameter
(i.e., a signi�cant region remains along the time).
It can be seen in the Figure 14 that, for a given
signi�cant region O, the width �max � �min of
the interval given by [�min; �max], where �min =
inff� : O 2 
 n B�g and �max = supf� : O 2

 n B�g, is very large. Then, we could think at
eliminating this stop criterion specially in the case
that the number of texture regions of the image is
unknown or there is not human supervision (it is
possible to obtain a correct segmentation with a
su�ciently large random scale parameter).
The main Data Structure needed by this al-

gorithm is the list of regions. For each region we
de�ne

� a list of its boundaries,
� its characteristics or channels: for each con-

sidered functional, the channels are de�ned as
we stablished above.

The boundaries are de�ned by

� its neighbouring regions and vertices,
� its n channels or characteristics: the channels

are the values mi (i = 1; � � � ; n) corresponding
to the number of times that the direction di
appears on the boundary.

The vertices are de�ned by

� its coordinates,
� a description of the distance between two

vertices along the geometrical curve joining
them.

7. Summary and discussion

In this paper we studied the problem of texture
segmentation by using a�ne invariant models. In-
deed, we proposed an a�ne invariant model to,
both extract a�ne invariant texture features from
images of natural scenes and to �nd the bound-
aries between the di�erent textures in the scene.
We take an intrinsic approach to solve the usual
problem in texture discrimination of choosing an

appropiate window in which one computes the tex-

ture features, by incorporating what we call the in-
trinsic elliptic �-neighborhood determined by the

texture pattern. From our a�ne intrinsic neigh-

borhoods we compute a�ne intrinsic orientation
matrices giving an estimate of the dominant local

orientation and a�ne invariant texture features
based on Zernike moments. These features are

used in a multichannel analogue to the a�ne in-
variant energy functional introduced in [6] for grey

level image segmentation. The method has been

tested on a set of natural and man-made textures
giving accurate discrimination.

On the other hand, we have exploited the classi-

cal idea of Gibson [32] who observed that, thanks
to texture, one can extract the essential informa-

tion of surface orientation in the scene, which is

naturally split into two components, called slant
and tilt. We showed that the a�ne intrinsic orien-

tation matrix captures this essential information
and that its combination with our a�ne invari-

ant segmentation model is able to recover faith-
fully the shape from texture information in images

where several textures are present.

The model we proposed combines the several

steps of discriminating textures, smoothing and
boundary detection into a coherent and uni�ed

framework with a simple and elegant formalism.
The model requires only one parameter (two in

the cases of "statistics of dominant local orienta-

tion" and of "a�ne invariant moments") which is
the desired number of regions. On the other hand,

the fact that the computation of the a�ne intrin-
sic elliptic �-neighborhood in each point of the

image domain is an iterative process slows down
the global algorithm, but it can be parallelized.

On the other hand, we could think at eliminating

the stop criterion in the algorithm (see subsection
6.4) specially in the case that the number of tex-

ture regions of an image is unknown or there is
not human supervision.
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Appendix A

Proof of Lemma 1.

Let M = (aij). Then

tr
�
(M � vvt)2

�
=
X
i;j

(a2ij � 2aijvivj + v2i v
2
j ):

(A1)

Then, di�erentiating (A1) with respect to vi and
equating to zero, we get:

Mv = kvk2v:

Hence, if v 6= 0, v is an eigenvector of M associ-
ated with the eigenvalue � = kvk2, then � must
be the largest eigenvalue. Indeed, let �1; : : : ; �d
be the set of eigenvalues of M ordered such that
�1 � : : : � �d and let ei be the normalized eigen-
vector associated to �i. Then M =

Pd
i=1 �iei
ei

and

M � v 
 v =

dX
i=1

�iei 
 ei � �jej 
 ej

where � = �j for some j = 1; : : : ; d. Then we see
that

kM � v 
 vk22 = tr(M � v 
 v)2 =
X
i6=j

�2i

is a minimum when � = �1.

Appendix B

Proof of Theorem 2.

(a) Let A1, A2 be two linear maps normalizing
g. Let u1(x) = g(A1x), u2(x) = g(A2x). Observe
that

u2(x) = g(A2x) = g(A2A
�1
1 A1x)

= fA2A
�1
1 gg(A1x) = fA2A

�1
1 gu1(x):

Hence, Mu2 = (A2A
�1
1 )tMu1(A2A

�1
1 ). Since

Mu1 = Mu2 = I, it follows that A2A
�1
1 is an or-

thogonal matrix. (a) is proved.
(b) Let A1, A2 be two linear maps normalizing
g and h, respectively, i.e., letting �g = fA1gg,
�h = fA2gh then M�g = At

1MgA1 = I and

M�h = At
2MhA2 = I. Hence Mg = (A�11 )tA�11 ,

Mh = (A�12 )tA�12 . On the other hand, since
h(x) = g(Ax), by (18) Mh = AtMgA and we have
that

(A�12 )tA�12 = At(A�11 )tA�11 A

and therefore

(A�11 AA2)
t(A�11 AA2) = I

i.e., U = A�11 AA2 is a rotation matrix. Finally,

�h(x) = h(A2x) = g(AA2x) = g(A1A
�1
1 AA2x)

= �g(A�11 AA2x) = fUg�g(x):

Appendix C

Proof of Lemma 2.

Let � > 0. Then, for some � = �(�; g; x) and
any (M 0; �0); M 0 2MS2; �

0 > 0 such that kM 0 �
Mnk+ j�0 � �nj < � we have

kH(g;M 0; �0; �)�H(g;Mn; �n; �)k2
� �kH(g;Mn; �n; �)k2:

(C1)
Let Bn :=

�
y 2 IR2 : hMn(y � x); y � xi � �n

	
:

Since Mn !M , one can easily show that

�Bn
! �B in Lp(
); 8p < +1;

for some convex set B. Then it is immedi-
ate to show that B =

�
y 2 IR2 : hM(y �

x); y � xi � �
	
: It follows that jBnj ! jBj and

kH(g;Mn; �n; �)k2 ! kH(g;M; �; �)k2: Thus, we
are done by letting n!1 in (C1).

Appendix D

Proof of Lemma 3.

H(h;M 0; �; �) =
jfy 2 "0(x) : h(y) � �gj

j"0(x)j

=
jfy 2 A�1"(�x) : g(Ay) � �gj

jdetA�1"(�x)j
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=
jfA�1z : z 2 "(�x); g(z) � �gj

jdetA�1"(�x)j
=

jfz : z 2 "(�x); g(z) � �gj
j"(�x)j

= H(g;M; �; �):

Let � > 0. Let �0 = �0(�; h; x) be such that if

k ~M 0 �M 0k+ j~�� �j < �0;

then

kH(h; ~M 0; ~�; �)�H(h;M 0; �; �)k2 � �kH(h;M 0; �; �)k2:

Let ~M; ~� be such that

k ~M �Mk+ j~�� �j < � :=
�0

max(1; kAk2) :

Then ~M 0 = At ~MA; ~� satis�es k ~M 0 �M 0k + j~� �
�j < max(1; kAk2)� = �0.
Hence

kH(g; ~M; ~�; �)�H(g;M; �; �)k2
= kH(h; ~M 0; ~�; �)�H(h;M 0; �; �)k2
� �kH(h;M 0; �; �)k2 = �kH(g;M; �; �)k2 ;

i.e., H(g;M; �; �) is stable at �x. The converse fol-
lows with the same proof.
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