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Abstrat: We study the AÆne Total Variation, a magnitude measuring the aÆne

omplexity of �nite unions of ontinua, in partiular, Jordan urves, appearing in

an aÆne invariant analogue of Mumford-Shah energy funtional used to segment

images. We prove a lower semiontinuity result for the ATV funtional.

Devoted to the memory of Julio Bouillet.

1. INTRODUCTION.

Even if the images we pereive are analyzed and understood without evident e�ort,

the understanding of them involves very omplex mehanisms whih, by now, we

annot reprodue in a omputer. The omplexity of image analysis motivated

its division in a series of simpler and independent tasks. Among them, edge

detetion and image segmentation seem to be fundamental. Certainly, we need to

identify the objets in a sene and therefore, to �nd their ontours or boundaries.

Then, segmenting an image amounts to subdivide the image domain into regions

orresponding to the projetion of visible surfaes of objets in a real sene. More

preisely, on one side, one wishes to smooth the nearly homogeneous regions of the

piture with two sopes: noise elimination and image interpretation, and, on the

other side, one wants to keep the aurate loation of these regions and restore

some regularity for their boundaries. A general treatment of this subjet an be

seen, for instane, in [MoSoli94℄ and [Rosenfeld℄.

Images are the projetion of physial objets in the three-dimensional world onto

a two-dimensional -planar- surfae, be it the retina or an array of sensors in a

video amera. Sine, in most situations, one annot ontrol the exat loation of

the objets to be reognized, we are onerned with �nding properties of an image

whih are invariant to transformations of the image aused by moving an objet so

as to hange its pereived position and orientation. The idea of invariane arises

from our ability to reognize objets irrespetive of suh movement. A good ap-

proximation to image formation in a real amera is given by the perspetive amera
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and DGICYT projet, referene PB94-1174
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model in whih points are projeted from the 3D world onto an image plane so that

all rays joining the objet and orresponding image points pass through a simple

point, alled the point of projetion. Sine, in the perspetive amera model, an

eulidean motion of a solid objet in the 3D world indues a planar projetive

transformation in the 2D image spae, one needs methods or features whih are

invariant to projetive planar transformations. Under the weak perspetive as-

sumption, i.e., when the objet's depth is small ompared with its distane from

the amera (whih orresponds to the foal distane f !1), the planar projetive

transformations an be approximated by aÆne linear transformations Hene, we

shall look for segmentation methods invariant under aÆne transformations, as a

simpli�ed form of invariane under planar projetive transformations. We would

like to mention that a lot of interest has been reently given to aÆne invariant

methods in image proessing (see [BaCaGon℄ and its referenes).

Coming bak to our purpose, the reent literature on segmentation problems shows

a strong onvergene of the methods to variational methods [Mumford℄, [MoSoli94℄

(see also [Geman℄, [Haralik85℄ for preedents). From these referenes, it is now

well known that a good segmentation an be obtained by minimizing an energy

funtional. The simplest suh energy funtional was proposed by Mumford-Shah

([Mumford℄). They proposed to segment the image g : 
! IR by minimizing

(1:1) E(u;B) =

Z


nB

k 5 uk

2

+

Z




ju� gj

2

+ �H

1

(B);

where 
 is an open set in IR

2

, generally a retangle, u is a pieewise smooth

funtion de�ned on 
, B is the set of boundaries in 
 �with length H

1

(B)�

where u is disontinuous and � > 0. They onjetured in [Mumford℄ that this

funtional has a minimum (u;B), with B being a �nite set of smooth C

1

urves.

The full onjeture has not been proved yet but a lot of signi�ant results have

been given ([MoSoli94℄). Mumford and Shah also proposed a simpli�ed version,

where u is imposed to be a pieewise onstant funtion in 
nB. In this ase, (1.1)

writes

(1:2) E(u;B) =

Z




ju� gj

2

+ �H

1

(B):

In [KoeMoSoli℄, Koeper-Morel-Solimini proved, mathematially and pratially,

that the \Region Growing" is an eÆient method to minimize this funtional (see

also [MoSoli94℄).

Although the Mumford-Shah funtional (1.1) is eulidean invariant, it is not aÆne

invariant. Indeed, the �rst term and the eulidean length are not invariant by aÆne

transforms. In [BaCaGon℄, we replaed the eulidean arlength �as a measure of

eulidean omplexity� by a di�erent expression measuring the aÆne omplexity of

the set of boundaries of the segmentation. When thinking in these terms, the �rst

thing oming to mind is the aÆne length of a urve but this quantity, if thought of

as an additive quantity, must be zero for a polygonal urve and does not seem to

be the right one if one tries to approximate a smooth urve by a pieewise aÆne
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one ([BaCaGon℄). The smoothness term in the Mumford-Shah funtional (1.1) an

also be replaed by an aÆne invariant one (see [BaCaGon℄). In fat, we proposed in

[BaCaGon℄ the following aÆne invariant version of the simpli�ed Mumford-Shah

funtional (1.2)

(1:3) E

af

(u;B) =

Z




ju� gj

2

+ �ATV (B):

where u is a pieewise smooth funtion, B is a family of urves in 
 belonging to a

suitable segmentation lass and ATV (B) denotes the AÆne Total Variation of the

segmentation B (see Setion 2). Let us briey explain what eah term represents.

The �rst term is the same term that appears in the funtional (1.2) expressing the

�delity of the segmentation to the image. Finally, the seond term measures the

aÆne omplexity of the set of boundaries of the obtained regions. Let us omment

that this term is global in nature (i.e., they make all parts of the image interat,

no matter their respetive distane).

Typially, when minimizing suh kind of funtionals, we are trying to approximate

g by a pieewise smooth funtion u and, at the same time, to redue the omplexity

of the disontinuities of u (the boundaries of the regions in the image). As we

analized in [BaCaGon℄ in the ase of (1.3), the disontinuities permitted by the

model will be either a �nite union of reti�able urves or a degenerate segmentation

omposed of a �nite or in�nite set of parallel lines �this degenerate ase an

happen (e.g.) if one uses (1.3) to approximate an image whih is a linear transition

from white to gray.

In [BaCaGon℄, we studied the aÆne invariant energy funtional (1.3) from a math-

ematial point of view, stating the existene of minimizers and giving a simple

numerial algorithm to minimize it based on the work of [KoeMoSoli℄ and using

also a simple numerial sheme in order to disretize the AÆne Total Variation

quantity. Our purpose here will be to give a more detailed mathematial analysis

of the term ATV (B) introdued in [BaCaGon℄ to measure the aÆne omplexity of

a family of urves. In partiular, we extend the ATV magnitude to reti�able

ontinua (or �nite unions of them) and we prove a lower semiontinuity result for

the ATV (see Theorem 3.1 below). Even if this has no impliations in the ontext

of our assumptions of [BaCaGon℄ where the admissible segmentations onsisted of

a �nite union of reti�able Jordan urves with disjoint interiors, it ompletes the

mathematial analysis of the ATV magnitude and some geometrial lemmas used

to prove the main result ould be interesting by themselves.

Let us explain the plan of the paper. We start in Setion 2 by realling the model

and the main results of [BaCaGon℄. Then, in Setion 3, we shall extend the ATV

funtional to the natural lass of (H

1

-reti�able) ontinua (and �nite unions of

them) and prove a lower semiontinuity result for the ATV in this setting.

Aknowledgement. We would like to thank P.L. Lions and J.M. Morel for their

valuable suggestions.
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2. THE MODEL AND EXISTENCE OF MINIMIZERS.

In this setion, we reall the de�nition of aÆne total variation of a set of urves

and the lass of admissible segmentations we used in [BaCaGon℄ to minimize the

proposed funtional (1.3). Finally we state without proof the existene of mini-

mizers.

For the sake of de�niteness, let 
 be an open retangle in IR

2

: Let � > 0: Let g be

the given image, i.e., g : 
! IR

+

is a bounded measurable funtion.

We need several de�nitions to introdue our model. Reall that a Jordan urve

is a ontinuous urve  : [a; b℄ ! IR

2

suh that for all t; t

0

2℄a; b[; (t) 6= (t

0

) if

t 6= t

0

(a < b). If (a) = (b) the Jordan urve is said to be losed. The points

(a) and (b) will be alled tips of the urve, all other points in the range of  are

interior points. Let = be the following family of sets

= =

n

B �

�


 : B is a �nite union of reti�able Jordan urves

whose interiors are disjoint and ontained in 


o

.

De�nition 2.1 Let u 2 L

2

(
). We say that u is ylindrial in the diretion

v 2 IR

2

; v 6= 0, if ru � v = 0 in the sense of distributions. We say that u is

ylindrial if u is ylindrial in some diretion v 2 IR

2

; v 6= 0.

A simple argument shows that u is ylindrial in the diretion v 6= 0 if and only

if, after a possible modi�ation of u in a set of null measure, u(x+ �v) = u(x) for

almost every x and all � 2 [0; 1℄, i.e., u is onstant on lines parallel to the diretion

v. Sine u 2 L

2

(
), almost all points x 2 
 are Lebesgue points of u. To hoose

a partiular representative of u we use the following rule: if for x 2 
 there exists

some � 2 IR suh that

lim

r!0

1

�r

2

Z

D(x;r)

ju(y)� �jdy = 0;

where D(x; r) = fy 2 
 : jjy � xjj � rg, then we de�ne u(x) = �. Hene when,

for a ylindrial funtion, we speak of the disontinuity set of u we mean the

disontinuity set of its hosen representative.

Let

�

0

:=

n

u : there exists B 2 = suh that u : 
! IR

+

is onstant on eah

onneted omponent of 
nB and u is disontinuous on B

o

�

1

:=

n

u : u : 
! IR

+

is a ylindrial funtion

o

:

Let

� = �

0

[ �

1

:

It will be ommon to all members u of � segmentations. Sometimes we will also

refer to funtion u as the segmented image and its disontinuity set B as the seg-

mentation boundaries or, simply, segmentation. Let us observe that segmentations
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in �

0

are Mumford-Shah type segmentations while segmentations in �

1

are aÆne

degenerate segmentations. This would orrespond to a underlying transformation

of the image by a linear map A with one of the eigenvalues near to zero.

To introdue the ATV (�), let us de�ne:

De�nition 2.2 Let �;

~

� be two reti�able Jordan urves. We de�ne the interation

of � and

~

� by

(2:1) Inter(�;

~

�) =

Z

�

Z

~

�

j�(x) ^ ~�(y)j d�(x) d~�(y);

where �; ~� denote, respetively, the arlength parameters on eah urve �;

~

� and

�(x); ~�(y) denote the tangent vetors at x 2 � and y 2

~

�, respetively.

For onveniene in notation, given u 2 �

0

, let us onsider B as the set of disonti-

nuity of u and write (u;B) 2 �

0

instead of u 2 �

0

. If u is in �

1

, the disontinuity

set of u may be very wild. On the other hand, it will not play any role in what

follows. But, for a uniform notation below, it will be onvenient to write also B

as the disontinuity set of u and write (u;B) 2 �

1

instead of u 2 �

1

. We also refer

to pairs (u;B) 2 � as segmentations.

We now de�ne the ATV funtional. Let (u;B) 2 �. If (u;B) 2 �

0

, then B =

N

S

i=1

�

i

where �

i

are reti�able Jordan urves whose interiors are disjoint. We set

ATV (B) =

N

X

i;j=1

Inter(�

i

;�

j

):

If (u;B) 2 �

1

, then we set ATV (B) = 0: In any ase, we de�ne

E

af

(u;B) =

Z




ju� gj

2

+ �ATV (B)(1:3)

and we want to minimize it on the lass of segmentations �.

With these de�nitions, Funtional (1.3) is aÆne invariant. Moreover, as proved

in [BaCaGon℄ the ATV funtional is the only positive funtional, up to a saling

fator, assoiating to eah pair of Jordan urves a quantity whih is geometri,

aÆne invariant, biadditive and ontinuous (in the W

1;1

topology of the spae of

parametri urves). With these preliminaries we have:

Theorem 2.1 E

af

attains its in�mum at some (u;B) 2 � .

The proof of Theorem 2.1, whih, as usual, is based on a lower semiontinuity

result of the energy funtional, an be seen in [BaCaGon℄.

3. LOWER SEMICONTINUITY OF THE ATV FUNCTIONAL IN

A MORE GENERAL FRAMEWORK.
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In this setion we prove that the AÆne Total Variation is a lower semiontinuous

funtional on a wider lass of sets, more spei�ally, the lass of sets made of

a �nite union of (H

1

-reti�able) ontinua. Let us reall some de�nitions and

terminology. Let 
 be an open onneted set in IR

2

whose boundary is a smooth

Jordan urve. We start with some basi notions of geometri measure theory

whih will be needed to introdue the urrent setting. Reall that a ontinuum

is a ompat onneted set with �nite H

1

-measure. Given a ontinuum E, by

H

1

(E) we denote the 1-dimensional Hausdor� measure of E. It an be proved

(see [Faloner℄, [MoSoli94℄) that a ontinuum is the union of a negligible set F

0

(with H

1

(F

0

) = 0) and of a �nite or ountable union of urves whih form an

arwise onneted set �i.e., any two points of E may be onneted by an ar

ontained in the ontinuum� and H

1

(E) is the sum of the lengths of this system

of urves. A detailed aount of it is given in [Faloner℄ or [MoSoli94℄.

De�nition 3.1 Let E;

~

E be two ontinua. Then eah one onsists of a ountable

union of reti�able urves, together with a set of H

1

-measure zero. Let E =

F

0

S

�

1

S

i=1

�

i

�

;

~

E =

~

F

0

S

�

1

S

i=1

~

�

i

�

be suh deompositions, where �

i

;

~

�

i

are reti�-

able Jordan urves with �

i

\�

j

=

~

�

i

\

~

�

j

= ; for i 6= j and H

1

(F

0

) = H

1

(

~

F

0

) = 0:

Then, we de�ne the Interation of E;

~

E by

Inter(E;

~

E) =

1

X

i;j=1

Inter(�

i

;

~

�

j

);

where Inter(�

i

;

~

�

j

) is given as in De�nition 2.2.

Let = be the following family of sets

= =

n

B � R

2

: B =

[

finite

B

k

; B

k

ontinuum; B

k

\ B

j

= ;; k 6= j

o

:

Given B 2 =, we de�ne the AÆne Total Variation of B by

ATV (B) =

X

k;j

Inter(B

k

; B

j

):

Realling that, for B 2 =, the tangent vetor � an be de�ned as a vetor measure

on B, d�(x), with a vetor density with respet to the Hausdor� measure H

1

with

values in S

1

, a more ompat and intrinsi de�nition of ATV

ATV (B) =

Z

B

Z

B

jd�(x) ^ d�(y)j =

Z

B

Z

B

j�(x) ^ �(y)jd�(x)d�(y)

makes sense.

Given v 2 IR

2

, it is lear what the notation

Z

B

jv ^ �(y)jd�(y)
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means if B �

N

S

k=1

B

k

where B

k

are ontinua with B

k

\ B

j

= ;; k 6= j: Indeed,

for eah k = 1; :::; N let, as above, B

k

= F

k

0

S

�

1

S

i=1

�

k

i

�

; where �

k

i

are disjoint

reti�able Jordan urves with �

k

i

\ �

k

j

= ; for i 6= j and H

1

(F

k

0

) = 0. We de�ne

Z

B

jv ^ �(y)jd�(y) =

N

X

k=1

1

X

i=1

Z

B\�

k

i

jv ^ �(y)jd�(y):

Our purpose is to state the lower semiontinuity of the ATV funtional with

respet to the Hausdor� distane.

De�nition. Given a sequene fB

n

g � = and B 2 = ; we shall say that the

sequene B

n

onverges to B if B

n

onverges to B in the Hausdor� metri.

Theorem 3.1 Let B

n

be a sequene in = suh that ATV (B

n

) � M for all n

and sup

n

(B

n

) < +1, where (B

n

) denotes the ardinal of ontinua ontained in

B

n

. Then, there exists a subsequene, still alled B

n

, and B 2 =; suh that B

n

onverges to B and

ATV (B) � lim inf

n!1

ATV (B

n

):

To prove Theorem 3.1 we start with two lemmas whih have the following geomet-

rial interpretation: either the sequene B

n

tends to a segmentation ontaining

two linearly independent diretions or the segmentations B

n

tend to osillate in a

single diretion giving in the limit a degenerate segmentation.

Lemma 3.2 Let fB

n

g be a sequene in =. Then, either

(a) 9� > 0 suh that Inter(Æ; B

n

) � �H

1

(Æ) for all n and all Jordan urves Æ

whose range is ontained in B

n

, or

(b) there exists a subsequene of fB

n

g, still alled fB

n

g, and vetors v

n

2 IR

2

,

kv

n

k = 1; suh that

Z

B

n

jv

n

^ �(y)jd�(y)! 0 as n!1:

Proof. If

9� > 0 suh that8n 2 IN; 8v 2 IR

2

with kvk = 1;(3:1)

Z

B

n

jv ^ �(y)jd�(y) � �;

then (a) immediately follows. In ase (3.1) is not true, then

8m 2 IN , there exist n

m

2 IN and v

m

2 IR

2

with kv

m

k = 1 satisfying

Z

B

n

m

jv

m

^ �(y)jd�(y) �

1

m

;
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whih gives the statement (b) above.

Lemma 3.3 Let fB

n

g be a sequene in = suh that ATV (B

n

) � M for all n:

Then there exists a subsequene, still alled fB

n

g, suh that

either (i) sup

n

H

1

(B

n

) � C ,

or (ii) ("degeneration") there exists a vetor v 2 R

2

suh that 8� > 0

H

1

�

fx 2 B

n

: jsin(�(x); v)j < �g

�

! +1

and

H

1

�

fx 2 B

n

: jsin(�(x); v)j � �g

�

! 0:

Proof. From the proof of previous Lemma 3.2, we have

either 9� > 0 suh that 8n 2 IN; 8v 2 IR

2

with kvk = 1;

Z

B

n

jv ^ �(y)jd�(y) � �(3:2)

or,8m 2 IN; there existn

m

2 IN and v

m

2 IR

2

with kv

m

k = 1 satisfying

Z

B

n

m

jv

m

^ �(y)jd�(y) �

1

m

:(3:3)

In the ase of (3.2) , we obtain

(3:4) ATV (B

n

) =

Z

B

n

Z

B

n

j�(x) ^ �(y)jd�(x)d�(y)� �H

1

(B

n

):

Sine ATV (B

n

) �M for all n, (3.4) yields part (i) of the lemma.

In ase (3.2) is not true, we have (3.3). Let us denote the subsequene B

n

m

again

by B

n

. Then, for any � > 0,

Z

B

n

jv

n

^ �(x)jd�(x) =

Z

B

n

jsin(v

n

; �(x))jd�(x)

�

Z

fx2B

n

: jsin(�(x);v

n

)j��g

jsin(v

n

; �(x))jd�(x)

��H

1

�

fx 2 B

n

: jsin(�(x); v

n

)j � �g

�

;

whih implies that H

1

�

fx 2 B

n

: jsin(�(x); v

n

)j � �g

�

! 0 as n!1.

On the other hand, sine we an assume, without loss of generality, that

H

1

(B

n

)! +1 as n!1 and

H

1

(B

n

) = H

1

(fx 2 B

n

: jsin(�(x); v

n

)j < �g)+H

1

(fx 2 B

n

: jsin(�(x); v

n

)j � �g)

we obtain that H

1

�

fx 2 B

n

: jsin(�(x); v

n

)j < �g

�

! +1 as n!1; 8� > 0.
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Now, there exists a subsequene of fv

n

g, still alled fv

n

g, and a vetor v, kvk = 1;

suh that v

n

! v: Take � > 0. Let n

0

be suh that jsin(v

n

; v)j < �; for all n � n

0

.

By elementary trigonometry,

jsin(�(x); v)j � jsin(�(x); v

n

)j+ jsin(v

n

; v)j < �+ �;

for x 2 fy 2 B

n

: jsin(�(y); v

n

)j < �g; � > 0: From that, the set fx 2 B

n

:

jsin(�(x); v

n

)j < �g is inluded in fx 2 B

n

: jsin(�(x); v)j < � + �g if n � n

0

:

Thus H

1

�

fx 2 B

n

: jsin(�(x); v)j < � + �g

�

! +1; as n ! 1; 8� > 0; whih

gives the �rst statement in (ii).

To prove the seond statement it is suÆient to follow the same argument as above,

observing that

jsin(�(x); v

n

)j � jsin((�(x); v)� (v

n

; v))j

� jsin(�(x); v)jjos(v

n

; v)j � jos(�(x); v)jjsin(v

n

; v)j:

Lemma 3.4 Suppose that ("degeneration") of Lemma 3.3 holds. Let g

n

: [0; L

n

℄!

R

2

be a urve parametrized by its arlength whose image Img

n

� B

n

: Extend g

n

to f

n

: [0;+1[! R

2

by f

n

(s) = g

n

(L

n

) for s � L

n

: Then, there exists a subse-

quene of ff

n

g; alled again ff

n

g; and a funtion f : [0;+1[! R

2

parametrizing

a line segment in the diretion v suh that

f

n

! f in C

lo

([0;1[);(3:5)

f

0

n

! f

0

in the weak

�

topology �(L

1

([0;1[); L

1

([0;1[)):(3:6)

Remark 3.1. It follows from the statement of Lemma 3.4 that if supL

n

< +1

then Imf

n

onverges to Imf in the Hausdor� topology.

Proof. Sine Imf

n

� B

n

; the range of f

n

is bounded. Moreover, sup

n

kf

0

n

k

1

<

+1: Then, there exists a subsequene of ff

n

g; alled again ff

n

g; and a funtion

f : [0;+1[! R

2

suh that (3.5) and (3.6) hold. Now we write: f

0

n

= (f

0

n

� v) v +

(f

0

n

� v

?

) v

?

; where v is the vetor oming from ("degeneration") in Lemma 3.3 ,

with kvk = 1. We are going to prove that

(3:7) f

0

n

� v

?

! 0 in �

�

L

1

([0;1[); L

1

([0;1[)

�

:

To this aim, we estimate

R

L

0

jf

0

n

(s) � v

?

j ds for any L > 0: Let L > 0.

If L

n

! +1; taking n large enough we may assume that L

n

> L: Then

Z

L

0

jf

0

n

(s) � v

?

j ds =

Z

L

0

j sin(f

0

n

(s); v)j ds

=

Z

fs2[0;L℄: jsin(f

0

n

(s);v)j<�g

jsin(f

0

n

(s); v)j ds

+

Z

fs2[0;L℄: jsin(f

0

n

(s);v)j��g

jsin(f

0

n

(s); v)j ds

� �L +

Z

fs2[0;L℄: jsin(f

0

n

(s);v)j��g

ds:
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Sine ("degeneration") of Lemma 3.3 holds,

(3:8) 0 � lim sup

n!1

Z

L

0

jf

0

n

(s) � v

?

j ds � �L:

Sine this is true for any � > 0; it follows that

(3:9) f

0

n

(s) � v

?

! 0 in L

1

[0; L℄:

If supL

n

< +1; take L > supL

n

: Sine f

0

n

(s) = 0 for any s > L

n

,

Z

L

0

jf

0

n

(s) � v

?

j ds =

Z

L

n

0

jf

0

n

(s) � v

?

j ds =

Z

L

n

0

j sin(f

0

n

(s); v)j ds:

As above we prove that (3.8) and (3.9) follow. Now let g 2 L

1

[0;+1[. Then for

any L;N > 0,

�

�

�

�

Z

+1

0

f

0

n

(s) � v

?

g(s)ds

�

�

�

�

�

Z

+1

0

jf

0

n

(s) � v

?

jjg(s)jds

=

Z

L

0

jf

0

n

(s) � v

?

j inf(jg(s)j; N)ds+

Z

L

0

jf

0

n

(s) � v

?

j(jg(s)j �N)

+

ds

+

Z

+1

L

jf

0

n

(s) � v

?

jjg(s)jds � N

Z

L

0

jf

0

n

(s) � v

?

jds

+

Z

L

0

(jg(s)j �N)

+

ds+

Z

+1

L

jg(s)jds:

Letting n!1

lim sup

n!1

�

�

�

�

Z

+1

0

f

0

n

(s) � v

?

� g(s)ds

�

�

�

�

�

Z

L

0

(jg(s)j �N)

+

ds+

Z

+1

L

jg(s)jds:

Letting N !1 and L!1 in this order in the above expression we get

lim sup

n!1

Z

+1

0

f

0

n

(s) � v

?

g(s)ds = 0:

This proves (3.7). It follows that

f

0

n

= (f

0

n

� v)v + (f

0

n

� v

?

)v

?

* (f

0

� v)v in �

�

L

1

([0;1[); L

1

([0;1[)

�

:

Sine, on the other hand, f

0

n

* f

0

in that topology, we get f

0

= (f

0

�v) v: Hene,

f

0

(s) = �(s) v; where � 2 L

1

[0;+1[; i.e.

f(t) = f(0) +

�

Z

t

0

�(s)ds

�

v:
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f parametrizes a segment in the diretion v:

The following simple tehnial fat will be required.

Lemma 3.5 Let p; q 2 
. Let [p; q℄ be the segment joining both points, i.e.

[p; q℄ = ftp+ (1� t)q : t 2 [0; 1℄g, and let Æ be any Jordan urve joining p and q.

Then, for any B 2 =

Inter(B; Æ) � Inter(B; [p; q℄):

Proof. Without loss of generality we may assume that B is a Jordan urve in


. Sine for any x 2 [p; q℄, �(x) =

p�q

jjp�qjj

Inter(B; [p; q℄) =

Z

[p;q℄

Z

B

j�(x) ^ �(y)jd�(y)d�(x) =

Z

B

j(p� q) ^ �(y)jd�(y)

=

Z

B

�

�

�

�

Z

Æ

�(x)d�(x) ^ �(y)

�

�

�

�

d�(y) �

Z

B

Z

Æ

j�(x) ^ �(y)jd�(x)d�(y)

= Inter(B; Æ):

Lemma 3.6 Suppose that ("degeneration") of Lemma 3.3 holds. Moreover, sup-

pose that sup

n

(B

n

) < +1, where (B

n

) denotes the ardinal of ontinua ontained

in B

n

. Then, there exists a subsequene of B

n

; alled again B

n

; suh that B

n

on-

verges to B where B 2 = onsists of a �nite number of line segments parallel to v

(whih may possibly be redued to a point).

Proof. Sine B

n

2 = and sup

n

(B

n

) < +1; there exists a subsequene B

n

suh

that (B

n

) = k for all n and we may write B

n

= K

n1

[ ::: [ K

nk

; where K

ni

are ontinua with H

1

(K

ni

) < +1 and K

ni

\ K

nj

= ; for i 6= j: Our strategy

will be as follows. We take i = 1 and onstrut a subsequene of K

n1

onverging

to a line segment parallel to v (possibly redued to a point). Having onstruted

a subsequene fn

r

g of IN suh that K

n

r

i

onverges to a line segment parallel to

v for any i = 1; 2; :::; j � 1 (j � k) we take i = j and onstrut a subsequene

fn

r

l

g of fn

r

g suh that K

n

r

l

j

also onverges to a line segment parallel to v: Our

lemma follows from this onstrution. Our proof redues to a single step. Suppose

that K

ni

; i < j; onverges to a line segment parallel to v: Consider i = j: Using

the Blashke seletion theorem, we �nd a subsequene of K

nj

; all it again K

nj

;

suh that K

nj

! K

j

in the Hausdor� distane where K

j

is a ontinuum. If

K

j

is not redued to a point, we �nd points p; q 2 K

j

; p

n

; q

n

2 K

nj

suh that

p

n

! p; q

n

! q and kp

n

� q

n

k � � > 0 for all n, for some � > 0: Sine K

nj

is a ontinuum, there exists an ar [p

n

; q

n

℄ � K

nj

joining p

n

to q

n

: By Lemma

3.4, [p

n

; q

n

℄ an be suitably parametrized to onverge to a line segment S

jv

in the

weak

�

topology �(L

1

[0;+1[; L

1

[0;+1[): Set B

jv

= K

j

\fline passing through a

point in S

jv

in the diretion vg: (Observe that p 2 S

jv

:) We laim that K

j

= B

jv

:

Otherwise, there exists a point ~p 2 K

j

suh that d(~p;B

jv

) > 0: As above we may

�nd p

n

; q

n

2 K

nj

suh that p

n

! ~p; q

n

! ~q 2 B

jv

; kp

n

� q

n

k � � > 0 for all n,

for some � > 0: Let u

n

= p

n

� q

n

: Let [p

n

; q

n

℄ be an ar ontained in K

nj

joining
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p

n

to q

n

: If sup

n

H

1

(K

nj

) < +1; the length of [p

n

; q

n

℄ is uniformly bounded.

By Lemma 3.4 and Remark 3.1, we know that, after extrating a subsequene,

[p

n

; q

n

℄ onverges in the Hausdor� distane to a line segment L parallel to v: It

follows that ~p; ~q 2 L: Hene ~p 2 B

jv

; whih yields a ontradition. In this ase,

K

j

= B

jv

: Now we may assume that H

1

(K

nj

)! +1 as n!1: We also assume

that u

n

! u where kuk � � > 0 is not parallel to v: Choosing � suÆiently small

we may assume that

(3:10)

j sin(�(x); u)j � � > 0 for some � > 0 and allx 2 fx 2 K

nj

: j sin(�(x); v)j < �g:

Finally, reall that, by Lemma 3.3, we may suppose that

H

1

(fx 2 K

nj

: j sin(�(x); v)j < �g)! +1 as n!1: Now, set

K

nj

=

S

m

�

nj

m

S

F

nj

0

; where �

nj

m

are reti�able urves and H

1

(F

nj

0

) = 0: Let

A

nj

� Inter

�

fx 2 K

nj

: j sin(�(x); v)j < �g ; u

n

�

�

X

m

Inter

�

fx 2 K

nj

: j sin(�(x); v)j < �g \ �

nj

m

; u

n

�

=

X

m

Z

�

nj

m

\fx2K

nj

: j sin(�(x);v)j<�g

j�(x) ^ u

n

j d�

m

(x);

where �

m

(x) denotes the arlenth of the urve �

nj

m

: Sine, by Lemma 3.5,

j�(x) ^ u

n

j � j�(x) ^

Z

[p

n

;q

n

℄

�(y) d�(y) j �

Z

[p

n

;q

n

℄

j�(x) ^ �(y)j d�(y);

we have

(3:11)

A

nj

�

X

j

Z

�

nj

m

\fx2K

nj

: j sin(�(x);v)j<�g

Z

[p

n

;q

n

℄

j�(x) ^ �(y)j d�(y) d�

m

(x)

= Inter

�

fx 2 K

nj

: j sin(�(x); v)j < �g; [p

n

; q

n

℄

�

� ATV (K

nj

) � ATV (B

n

) �M:

On the other hand,

A

nj

=

X

m

Z

�

nj

m

\fx2K

nj

: j sin(�(x);v)j<�g

j�(x) ^ u

n

j d�

m

(x)

= ku

n

k

X

m

Z

�

nj

m

\fx2K

nj

: j sin(�(x);v)j<�g

j sin(�(x); u

n

)jd�

m

(x):

Using (3.10) ,

(3:12)

A

nj

�ku

n

k �

X

m

Z

�

nj

m

\fx2K

nj

: j sin(�(x);v)j<�g

d�

m

(x)

=� ku

n

kH

1

�

fx 2 K

nj

: j sin(�(x); v)j < �g

�

:
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As observed above, the right hand side of (3.12) tends to +1 as n!1; ontra-

diting (3.11). We have proved that K

j

= B

jv

: Our lemma is proved.

If we may expet the lower semiontinuity result of Theorem 3.1 to be true, the

same result should be true for Jordan urves. Indeed, this is the ase and it is

stated in the next Lemma whih will be needed during the proof of Theorem 3.1.

Lemma 3.7 ([BaCaGon℄ Lemma 4.7) Let f

n

: [0; L

n1

℄ ! IR

2

; g

n

: [0; L

n2

℄ ! IR

2

be the arlength parametrizations of sequenes of Jordan urves A

n

= f

n

([0; L

n1

℄),

B

n

= g

n

([0; L

n2

℄). Suppose that L

n1

; L

n2

are bounded sequenes. Suppose that

A

n

! A; B

n

! B in the Hausdor� distane. Then

(3:13) Inter(A;B) � lim inf

n

Inter(A

n

; B

n

):

The proof of Theorem 3.1 will be a onsequene of the following geometrial result

whih may be interesting by itself.

Lemma 3.8 Let K

j

be a sequene of ontinua suh that sup

j

H

1

(K

j

) < +1

and K

j

! K as j ! 1. Let C

1

; : : : ; C

p

be a system of Jordan urves suh that

C

i

� K; C

i

\ C

j

= ;; i 6= j; i; j = 1; : : : ; p: Then, there exists a sequene fj

n

g

1

n=1

of IN and sequenes of urves

�

D

i

n

	

1

n=1

; i = 1; : : : ; p, suh that

D

i

n

� C

i

+ B

�

0;

1

n

�

; i = 1; :::; p;(3:14)

C

i

� D

i

n

+ B

�

0;

1

n

�

; i = 1; :::; p;(3:15)

H

1

�

p

[

i=1

D

i

n

nK

j

n

�

�

18

n

�

H

1

(K) + 1

�

:(3:16)

Hene, (3.14), (3.15), (3.16) imply that, for eah i = 1; :::; p, we may onstrut a

sequene of urves D

i

n

ontained in K

j

n

up to a set of small H

1

-measure and suh

that D

i

n

! C

i

as n!1.

To prepare the geometrial onstrution needed for the proof of Lemma 3.8, we

reall the following result whih was pointed to us by J.M. Morel.

Lemma 3.9 ([MoSoli94℄, 9.28, 9.31, 9.57). Let K be a regular 1-set (for instane,

a ontinuum). Then, there exists K

0

� K with H

1

(K nK

0

) = 0 suh that for all

x 2 K

0

there exists a line D(x) suh that

8� > 0; 8r

0

> 0; 9r < r

0

suh that

H

1

�

P

D(x)

�

K \ B(x; r)

��

� (1� �)2r(3:17)

H

1

((B(x; r) nD(x; r; �r)) \K) < �r(3:18)

H

1

�

B(x; r) \K

�

� (2 + �)r(3:19)



14

where P

D(x)

(respetively P

D(x)

?
) denotes the projetion onto the line D(x) (re-

spetively D(x)

?

, the orthogonal to D(x) passing through x ) and D(x; r; a) =

fy 2 B(x; r) kP

D(x)

?(y � x)k � ag.

Proof of Lemma 3.8. Let d

�

= inffd(C

i

; C

j

) : i; j = 1; 2; : : : ; p; i 6= jg. Fix

� 2 (0; 1) and r

0

<

d

�

4

, r

0

> 0. Consider the family V (�; r

0

) = fB(x; r) : 0 < r <

r

0

; x 2 K

0

; B(x; r)satis�es (3.17), (3.18), (3.19) g. It is lear by Lemma 3.9 that

V (�; r

0

) is a Vitali overing of K

0

. Then, we selet a �nite or ountable disjoint

sequene F = fB(x

j

; r

j

)g

1

j=1

� V (�; r

0

) suh that H

1

(K n[

1

j=1

B(x

j

; r

j

)) = 0 and

H

1

(K) �

P

1

j=1

2r

j

+ �. Observe that, by our hoie of r

0

, no ball of F intersets

two of the urves C

1

; C

2

; : : : ; C

p

. Moreover, sine K is onneted, we have

g

(3:18) H

1

((B(x

j

; (1� �)r

j

) nD(x

j

; (1� �)r

j

; 2�r

j

)) \K) = 0; 8j 2 IN:

In fat, sine K is onneted, if there were a point of K in B(x

j

; (1 � �)r

j

) n

D(x

j

; (1��)r

j

; 2�r

j

) there would exist an ar joining it to K\D(x

j

; (1��)r

j

; �r

j

).

This would imply the existene of an ar of K of length at least �r

j

rossing either

D(x

j

; (1 � �)r

j

; 2�r

j

) n D(x

j

; (1 � �)r

j

; �r

j

) or B(x

j

; r

j

) n B(x

j

; (1 � �)r

j

). This

would ontradit (3.18).

Let us also observe that it follows from (3.17)

g

(3:17) H

1

�

P

D(x)

(K \ B(x

j

; (1� �k)r

j

))

�

� (1� �)2r

j

� 2k�r

j

for all k suh that k� < 1 and j 2 IN . On the other hand, observe that

1

X

j=1

2r

j

�

1

1� �

1

X

j=1

H

1

(P

D(x

j

)

(K \ B(x

j

; r

j

)))

�

1

1� �

1

X

j=1

H

1

(K \B(x

j

; r

j

)) �

H

1

(K)

1� �

< +1:

Choose � > 0; � < min

�

�; minfH

1

(C

i

) : i = 1; :::; pg

	

. Let N = N(�) be suh

that

1

P

j=N+1

2r

j

< �: To simplify our notation, let us write r

jk

= (1 � k�)r

j

. Let

us de�ne the familly of balls:

F

ik

=

�

B(x

j

; r

jk

) : j � N; B(x

j

; r

j

) 2 F; B(x

j

; r

jk

) \ C

i

6= ;

	

;

i = 1; 2; :::; p; k suh that k� < 1.

For the sake of simpliity let us onentrate our argument on one of the urves

C

i

; i = 1; 2; : : : ; p, say on C

1

. Fix a parametrization of C

1

. We laim that for

k = 7, we may renumber the balls of F

17

(3:20) F

17

= fB(x

j

; r

j7

) : j = 1; : : : ; N

17

g
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so that if j

1

< j

2

then C

1

enters B(x

j

1

; r

j

1

7

) before it enters B(x

j

2

; r

j

2

7

) and it

does not enter again B(x

j

1

; r

j

1

7

) after B(x

j

2

; r

j

2

7

).

For that, for eah ball B = B(x

j

; r

j7

) 2 F

17

, let p(x

j

; r

j7

), q(x

j

; r

j7

) be the

�rst and last point of C

1

in B respetively. Observe that, by

g

(3:18), when C

1

enters B(x

j

; r

j1

) or B(x

j

; r

j7

) it does it through D(x

j

; r

j1

; 2�r

j

) or D(x

j

; r

j7

; 2�r

j

)

respetively. Let us observe that

(3:21) from p(x

j

; r

j7

) to q(x

j

; r

j7

); C

1

is entirely ontained in B(x

j

; r

j1

):

Else, this would imply a ost in length for C

1

, hene forK, in B(x

j

; r

j1

)nB(x

j

; r

j7

)

of, at least,

(3:22) 3 � 6�r

j

= 18�r

j

:

On the other hand, sine, by using (3.17)

H

1

(K \ B(x

j

; r

j7

)) � H

1

(P

D(x

j

)

(K \ B(x

j

; r

j7

))) � H

1

(P

D(x

j

)

(K \B(x

j

; r

j

)))

�H

1

(P

D(x

j

)

(K \ (B(x

j

; r

j

) nB(x

j

; r

j7

))))

� (1� �)2r

j

� 2 � 7�r

j

= 2r

j

� 16�r

j

and, using (3.19)

H

1

(K \ (B(x

j

; r

j

) nB(x

j

; r

j7

))) � (2 + �)r

j

�H

1

(K \ B(x

j

; r

j7

))(3:23)

� (2 + �)r

j

� 2r

j

+ 16�r

j

= 17�r

j

:

This ontradits our previous estimate (3.22). Therefore (3.21) follows. In parti-

ular, C

1

does not visit another ball in between p(x

j

; r

j

7

) and q(x

j

; r

j

7

). With these

remarks, we may renumber the balls in F

17

as in (3.20) so that (1 �)j

1

< j

2

(� N

17

)

if and only if C

1

enters B(x

j

1

; r

j

1

7

) before it enters B(x

j

; r

j

2

7

). As we have shown

above, if j

1

< j

2

we annot go bak to B(x

j

1

; r

j

1

7

) after going to B(x

j

2

; r

j

2

7

).

Now, it is lear that �B(x

j

; r

j7

) \ D(x

j

; r

j7

; 2�r

j

) has two onneted ompo-

nents. Call l(x

j

; r

j7

) the onneted omponent ontaining p(x

j

; r

j7

) and all

R(x

j

; r

j7

) the other one. Let l(x

j

; r

j7

) = fp 2 D(x

j

; r

j7

; 2�r

j7

) : p is onneted

to l(x

j

; r

j7

) by an ar of C

1

ontained in D(x

j

; r

j7

; 2�r

j7

)g; R(x

j

; r

j7

) = fp 2

D(x

j

; r

j7

; 2�r

j7

) : p is onneted to R(x

j

; r

j7

) by an ar of C

1

ontained in

D(x

j

; r

j7

; 2�r

j7

)g. It is lear that l(x

j

; r

j7

) 6= ;. Two situations are possible:

R(x

j

; r

j7

) 6= ;: In this ase(i)

i(x

j

; r

j7

) � inffjjp� qjj : p 2 l(x

j

; r

j7

); q 2 R(x

j

; r

j7

)g = 0:

R(x

j

; r

j7

) = ;:(ii)

In fat, if R(x

j

; r

j7

) 6= ; and i(x

j

; r

j7

) > 0, then there are at least four disjoint

ars of C

1

rossing B(x

j

; r

j

1

) nB(x

j

; r

j7

), eah one of length, at least, 6�r

j

. Hene

H

1

(K \ (B(x

j

; r

j

1

) nB(x

j

; r

j7

)) � 4 � 6�r

j

= 24�r

j
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ontraditing again our estimate (3.23). Observe that, in the �rst ase (i),

q(x

j

; r

j7

) 2 R(x

j

; r

j7

) and, in the seond one, q(x

j

; r

j7

) 2 l(x

j

; r

j7

).

Sine K

j

onverges to K as j !1, we may hoose j(�) large enough so that

(3:24) d(K

j(�)

; K) <

�

3

with � <

�

2

inffr

j

: j = 1; 2; � � � ; Ng. Consider a ball B = B(x

j

; r

j7

) 2 F

17

.

Observe that

(3:25) K

j(�)

\ (B(x

j

; r

jk

� �) nD(x

j

; r

jk

� �; 2�r

j

+ �)) = ;

for k = 1; 7. To simplify our notation we write x; r; r

k

instead of x

j

; r

j

; r

jk

exept

when it will be onvenient to stress the subindex j. Consider a �nite set of points

fp

1

; � � � ; p

s

g of C

1

\B, ordered by the arlength parametrization of C

1

, suh that

jp

i

� p

i+1

j <

�

3

, i = 1; 2; � � � ; s� 1. By (3.24), we �nd points q

i

2 K

j(�)

in the balls

B(p

i

;

�

3

), i = 1; 2; � � � ; s. Observe that jq

i

� q

i+1

j � �, i = 1; 2; � � � ; s � 1. Now,

observe that by (3.25), any ar of K

j(�)

ontained in B(x; r

7

� �) exits through

D(x; r

7

� �; 2�r+ �)\ �B(x; r

7

� �) (if it exits the ball) whih has two onneted

omponents whih may be alled aording to their proximity to l(x; r

7

), R(x; r

7

)

by l(x; r

7

; �), R(x; r

7

; �), respetively. Let us �rst suppose that we are in ase

(i) above. Consider the points of fq

1

; � � � ; q

s

g ontained in D(x; r

7

; 2�r + �) \

B(x; r

7

� �). Call then fm

1

; � � � ;m

s

0

g, s

0

� s. If there is an ar of K

j(�)

in

D(x; r

7

� �; 2�r + �) joining (a point of) l(x; r

7

; �) to a point of R(x; r

7

; �), then

we hoose it. Otherwise, no ar of K

j(�)

joins l(x; r

7

; �) to R(x; r

7

; �). In this

ase, any ar ontained in K

j(�)

and passing through some point of fm

1

; :::;m

s

0

g

is onneted either to l(x; r

7

; �) or to R(x; r

7

; �) but not to both of them. Reall

that our purpose is to onstrut a urve joining l(x; r

7

; �) to R(x; r

7

; �) ontained,

exept for a small set, in K

j(�)

. If there is an ar ontained in K

j(�)

joining m

1

to R(x; r

7

; �) then we hoose it. Sine the distane of this ar to l(x; r

7

; �) is less

than �, we omplete our ar with an arti�ially added one whose length does not

exeed �. If no ar joining m

1

to R(x; r

7

; �) exists, then there is an ar in K

j(�)

joining m

1

to l(x; r

7

; �) and we go to the next point m

2

to start the game again.

If there is an ar in K

j(�)

joining m

2

to R(x; r

7

; �) then we selet suh an ar.

In this ase we have two ars in K

j(�)

, one joining m

1

to l(x; r

7

; �) and the other

joining m

2

to R(x; r

7

; �). We add an arti�ial segment joining m

1

tom

2

(of length

less than �) to omplete a urve joining l(x; r

7

; �) to R(x; r

7

; �) and ontained in

K

j(�)

exept for a set of length less than �. If no ar of K

j(�)

exists joining m

2

to R(x; r

7

; �), then there is an ar in K

j(�)

joining m

2

to l(x; r

7

; �) and we go to

the next point and start the game again. We ontinue this strategy until we reah

the last point m

s

0

. At the end we have a urve, whih may have double points,

joining l(x; r

7

; �) to R(x; r

7

; �) and ontained in K

j(�)

, exept for a set of length,

at most, �. Using [Faloner℄ , Lemma 3.12, we may extrat from it a simple urve

�(x; r

7

; �) ontained in D(x; r

7

� �; 2�r

7

+ �) and ontained in K

j(�)

exept for a

set of length, at most, �. Then, we extend this ar to join the �rst entrane point

of C

1

in l(x; r

7

) to the end of �(x; r

7

; �) in l(x; r

7

; �) and the last exit point of C

1

in R(x; r

7

) to the end of �(x; r

7

; �) in R(x; r

7

; �). This an be done with a ost in
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length of, at most, 2(4�r + �). Call �(x; r

7

) this extended ar. Then we onnet

�(x; r

7

) with the previous ball (if j � 2) B(x

j�1

; r

j�17

) by an ar of C

1

going from

q(x

j�1

; r

j�17

) to p(x

j

; r

j7

) and with B(x

j+1

; r

j+17

) (j < N) by an ar of C

1

going

from q(x

j

; r

j7

) to p(x

j+1

; r

j+17

).

Let us now onsider ase (ii). In this ase, we take the �rst and last points of C

1

in l(x; r

7

) and we join them by the ar of l(x; r

7

) whih joins them. The length

of this ar does not exeed 4�r. As above, we join q(x

j�1

; r

j�17

) to p(x

j

; r

j7

) and

q(x

j

; r

j7

) to p(x

j+1

; r

j+17

) by ars of C

1

.

Sine there is only a �nite number of balls following the previous spei�ations,

we may onstrut a urve D

1

�

satisfying

C

1

� D

1

�

+ B(0; 2r

0

); D

1

�

� C

1

+ B(0; 2r

0

):

Finally, we observe that D

1

�

is ontained in K

j(�)

exept for a set of small H

1

-

measure. In fat, the length of D

1

�

not ontained in K

j(�)

is estimated by:

a) The length of arti�ial urves used to onstrut D

1

�

inside the balls B(x

j

; r

j;7

),

j = 1; :::; N

17

. As we have seen above, for eah ball B(x

j

; r

j7

) this length is

estimated by 2(4�r

j

+ �) + � �

19

2

�r

j

. Hene, the length ontribution of these

arti�ial urves for all balls an be estimated by

(3:26)

N

17

X

j=1

19

2

�r

j

�

19�

4(1� �)

1

X

j=1

H

1

�

K \ B(x

j

; r

j

)

�

�

19�

4(1� �)

H

1

(K):

b) The length of C

1

ontained in the balls B(x

j

; r

j

) n B(x

j

; r

j7

); j = 1; :::; N

17

.

Sine:

1

X

j=1

H

1

�

K \ (B(x

j

; r

j

) nB(x

j

; r

j7

))

�

= H

1

(K)�

1

X

j=1

H

1

�

K \B(x

j

; r

j7

)

�

and, using

g

(3:17), (3.19),

1

X

j=1

H

1

�

K \ B(x

j

; r

j7

)

�

�

1

X

j=1

(1� 8�)2r

j

�

2(1� 8�)

2 + �

1

X

j=1

H

1

�

K \ B(x

j

; r

j

)

�

=

2� 16�

2 + �

H

1

(K):

Then

(3:27)

1

X

j=1

H

1

�

K \ (B(x

j

; r

j

)nB(x

j

; r

j7

))

�

� H

1

(K)

�

1�

2� 16�

2 + �

�

�

17

2

�H

1

(K):

) The length of C

1

ontained in the balls B(x

j

; r

j

); j � N+1; whih is estimated

by

(3:28)

1

X

j=N+1

H

1

�

K \ (B(x

j

; r

j

)

�

�

2 + �

2

1

X

j=N+1

2r

j

<

2 + �

2

� <

2 + �

2

�:
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Adding (3.26), (3.27), (3.28) we get

H

1

�

D

1

�

nK

j(�)

�

�

19�

4(1� �)

H

1

(K) +

17

2

�H

1

(K) +

2 + �

2

�:

Proeeding in a similar way as we did for D

1

�

, we onstrut urves D

1

�

; :::; D

p

�

suh

that

C

i

� D

i

�

+ B(0; 2r

0

); D

i

�

� C

i

+ B(0; 2r

0

);

H

1

�

p

[

i=1

D

i

�

nK

j(�)

�

�

19�

4(1� �)

H

1

(K) +

17

2

�H

1

(K) +

2 + �

2

�:

The statement of Lemma 3.8 follows by repeating this onstrution for eah n and

taking r

0

=

1

2n

; � =

1

n+1

at eah step.

Proof of Theorem 3.1. As we said in the disussion previous to Lemma 3.8,

without loss of generality, we may assume that (B

n

) = k for all n, where k � 1.

We shall give the omplete proof only when k = 1, the general ase being a simple

extension of it. Sine the ATV of a �nite union of parallel segments is zero, by

Lemma 3.3 and Lemma 3.6, we may assume that sup

n

H

1

(B

n

) < +1: To simplify

our presentation let us �rst onsider the ase in whih (B

n

) = 1 for all n, i.e., B

n

is a sequene of ontinua K

n

, with sup

n

H

1

(K

n

) < +1; onverging to a ontinuum

K. We may also assume that B

n

is suh that limATV (B

n

) = lim infATV (B

n

).

Let �

n

be a sequene of positive numbers onverging to zero. De�ne p(0) = 0; C

0

=

;; �

0

= H

1

(K): Suppose that, at stage n, we have a system of urves C

0

; :::; C

p(n)

;

suh that C

i

\ C

j

= ; for i 6= j and

(3:29) H

1

(K n (C

0

[ ::: [ C

p(n)

) � �

n

:

Then, at stage n + 1 we extrat urves C

p(n)+1

; :::; C

p(n+1)

from K n (C

1

[ ::: [

C

p(n)

) to get a system C

0

; :::; C

p(n+1)

suh that C

i

\ C

j

= ; for i 6= j and

H

1

(K n (C

0

[ ::: [ C

p(n+1)

) � �

n+1

: Let us onsider m �xed. Consider the family

of urves C

1

; :::; C

p(m)

: Let D

i

n

; i = 1; :::; p(m), be as in the statement of Lemma

3.8 satisfying (3.14), (3.15), (3.16) with p = p(m).

Now, let us observe that

(3:30) ATV (K) �

p(m)

X

i;j=1

Inter(C

i

; C

j

) + 2H

1

(K) �

m

+ �

2

m

:

Sine sup

n

p(m)

P

i=1

H

1

(D

i

n

) < +1; we may suppose that the arlength parametrization

of D

i

n

onverges to a parametrization of D

i

; i = 1; :::; p(m). Hene, they also
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onverges in the Hausdor� distane. Then, for any � > 0, letting n ! 1 in

(3.14), (3.15) we get

D

i

� C

i

+B(0; �); C

i

� D

i

+ B(0; �):

Sine C

i

; D

i

are ompat sets and the above inlusions hold for all � > 0, we get

that C

i

= D

i

. Now, we may apply Lemma 3.7 to get

(3:31) Inter(C

i

; C

j

) � lim inf

n

Inter(D

i

n

; D

j

n

):

For simpliity, write K

n

for the sequene K

j

n

found in Lemma 3.8. Sine

Inter(D

i

n

; D

j

n

) =Inter(D

i

n

\K

n

; D

j

n

\K

n

) + Inter(D

i

n

nK

n

; D

j

n

\K

n

)

+Inter(D

i

n

\K

n

; D

j

n

nK

n

) + Inter(D

i

n

nK

n

; D

j

n

nK

n

);

it follows that

(3:32)

Inter(D

i

n

; D

j

n

) �Inter(D

i

n

\K

n

; D

j

n

\K

n

)+

+ 2H

1

�

[

p(m)

i=1

D

i

n

nK

n

�

M +H

1

�

[

p(m)

i=1

D

i

n

nK

n

�

2

;

where M represents a bound on H

1

(K

n

) (independent of n). Using (3.30), (3.31),

(3.32) and (3.16) , we get

ATV (K) �

p(m)

X

i;j=1

lim inf

n

�

Inter(D

i

n

\K

n

; D

j

n

\K

n

)+

+

36M

n

(H

1

(K) + 1) +

324

n

2

(H

1

(K) + 1)

2

�

+ 2H

1

(K)�

m

+ �

2

m

�

p(m)

X

i;j=1

lim inf

n

Inter(D

i

n

\K

n

; D

j

n

\K

n

) + 2H

1

(K)�

m

+ �

2

m

� lim inf

n

p(m)

X

i;j=1

Inter(D

i

n

\K

n

; D

j

n

\K

n

) + 2H

1

(K)�

m

+ �

2

m

� lim inf

n

ATV (K

n

) + 2H

1

(K)�

m

+ �

2

m

:

Sine this is true for all m, letting m!1 we get

(3:33) ATV (K) � lim inf

n

ATV (K

n

):
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