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Nonlocal Data Comparison, to be used to identify similarities

Are there similarities in data? / in the real World?

Natural images contain self-similarities, which are more evident on
small neighborhoods (often called patches).
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Human brain can easily compare and find similarities.

It can even remove the
hedge and complete the
Politecnico building by
exploiting the
self-similarity present in
the scene and using
appropriate perspective
distorsions to adapt it to
the point of view.
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Ambitious goal

To understand what is the role of smoothness and
self-similarity principles in modelling natural images or
videos.

• Analysis of Self-similarities + Redundancy +
Regularity in images of real scenes.
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Goal: To compare in order to identify similarities

between several images or videos.

Or within the same

I

I
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Goal: To compare in order to identify similarities
between several images or videos. Or within the same

I A common way to compare images is to compare local neighborhoods, or
patches, around each pair of points in comparison.

• Patch-based approach: Nonlocal approach.
• Underlying assumption: image self-similarity.

I Needed: An appropriate similarity measure or comparison measure
between patches to analyse those self-similarities or similarities.
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Patch-based image comparison
We consider a general definition for ’images’, that is,

u : Ωu ⊂ RN → RM ,

v : Ωv ⊂ RN → RM .

A patch-based similarity measure will be denoted by D:

D : Ωu × Ωv −→ R
(x , y) −→ D (pu(x),pv(y))

where pu(x): patch of u centered at x , pu(x) := pu(x , ·), defined by
pu(x , h) := u(x + h), h ∈ ∆, the patch domain, often a square or a disc.

In short, denoted by

D : Ωu × Ωv −→ R
(x , y) −→ D(x, y)
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Classical similarity measure between two (square) patches

• Euclidean distance, in the discrete setting:

D(x , y) =
1

|∆|
∑
h∈∆

(
u(x + h)− v(y + h)

)2

,

where u and v are images, ∆ denotes a patch centered at 0, and |∆| its area.

• In the continuous setting:

D(x , y) =
1

C

∫
R2

η(h)
(
u(x + h)− v(y + h)

)2

dh,

where C is a normalization factor and η(h) is either a characteristic function:

η(h) =

{
1 if h ∈ ∆
0 if h /∈ ∆

or a windowing weighting function (e.g., a Gaussian) with effective support in ∆.
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When just square patches and the Euclidean distance are not enough
to compare and identify self-similarities
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Intuition: patches related by a rotation

Intuition: D(x , y) =
1

C

∫
R2

η(h)
(
u(x + h)− u(y + R(y)h)

)2

dh
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Intuition: patches related by a rotation

Intuition: D(x , y) =
1

C

∫
R2

η(h)
(
u(x + h)− u(y + R(y)h)

)2

dh
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Self-similarity under perspective distortion

WANTED: shape-adaptive patches and an appropriate similarity measures to
compare them.

HOW: by endowing the image domain with Riemannian metrics and use an

axiomatic approach providing appropriate comparison distances between

patches that automatically and intrinsically adapt the size and shape of the

patches being compared.
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Self-similarity under perspective distortion

WANTED: shape-adaptive patches and an appropriate similarity measures to
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axiomatic approach providing appropriate comparison distances between
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Nonlocal approach for self-similarity’s understanding using Riemannian
metrics and an axiomatic approach for image comparison

Image source: Vadim Fedorov

Affine covariant structure tensors as metrics on the image domain (1st row: metric balls are placed every 25 pixels. 2nd row: at

corresponding ones).
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In any dimension, including video

Appropriate metrics in video for video similarity measures

Image source: Patricia Vitoria
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Appropriate metrics in video for video similarity measures

Image source: Patricia Vitoria
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Joint work with:

Pablo Arias, Felipe Calderero, Vicent Caselles, Vadim Fedorov, Gabriele
Facciolo, Gloria Haro, Vanel Lazcano, Maria Oliver, Roberto
P.Palomares, Lara Raad, Rida Sadek, Patricia Vitoria.
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Outline

• Nonlocal data comparison and similarity analysis
I Multiscale analysis of similarities between images on Riemannian

manifolds. Axiomatic approach.

I The linear case.

I The case of RN endowed with a metric.

I Affine covariant structure tensors as metrics.

• Seven applications:

1. Image and Video denoising.
2. Exemplar-based inpainting.
3. Image segmentation
4. Video simplification/segmentation, spatio-temporal tubes for video

analysis.
5. Depth completion by a geodesic Biased AMLE method
6. Motion inpainting by an image based geodesic AMLE method
7. Dynamic shape disocclusion
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Some notation and definitions
Riemannian Manifolds:

A subsetM⊂ RP is called a smooth N-dimensional manifold
in RP (P ≥ N), if every point ξ ofM has an open neighborhood
V ⊂M that is diffeomorphic to an open subset U ⊂ RN .

M
ξ

V ⊂ M U ⊂ RNφ : V → U

ψ : U → V

A Riemannian manifold is a smooth manifold equipped with
a Riemannian metric, which provides smoothly varying choices
of inner products on tangent spaces.
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Some notation and definitions

• Let (M, g) be a smooth Riemannian manifold of dimension N.

• Given a point ξ ∈M, we denote by TξM the tangent space to M at
the point ξ. By T ∗ξM we denote its dual space.

• Let ξ ∈M, U ⊆ RN an open set containing 0, and ψ : U → N be any
coordinate system such that ψ(0) = ξ. For simplicity we shall denote by
G(ξ) the (symmetric) matrix (gij(ξ)) , and by ΓM,k (ξ) the matrix

(ΓM,k
ij (ξ)), i , j = 1, . . . ,N for each k = 1, . . . ,N.

• Rotations in the tangent space Let us define a rotation
R : TξM→ TξM as a linear map that satisfies

〈Rv ,Rw〉 = 〈v ,w〉 ∀v ,w ∈ TξM.

Notice that rotations satisfy R tGR = G .
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Some notation and definitions

The manifold N =M1 ×M2

Let (Mi , gi ) be a smooth Riemannian manifold with metric gi , i = 1, 2. Let
Γ(i) be the connection (or Christoffel symbols) on Mi .
We shall work with the manifold N =M1 ×M2 with the metric g = g1 × g2,
so that TξN = Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2.
If (vi ,wi ) ∈ Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2, then we consider the
metric

〈(v1,w1), (v2,w2)〉ξ = 〈v1, v2〉ξ1 + 〈w1,w2〉ξ2 = (G1(ξ1)v1, v2) + (G2(ξ2)w1,w2).

With a slight abuse of notation, let us write G(ξ) = diag(G1(ξ1),G2(ξ2)).

Gradient and Hessian: DNC = (Dx C ,Dy C), D2
NC =

(
DN ,xx C DN ,xy C
DN ,xy C DN ,yy C

)
.

In coordinates, with i, j, k ∈ {1, . . . , N}, D2
N C =


∂2C
∂xi∂xj

∂2C
∂xi∂yj

∂2C
∂yj∂xi

∂2C
∂yi∂yj

 −
 Γ(1)k (x) ∂C

∂xk
0

0 Γ(2)k (y) ∂C
∂yk

.

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Some notation and definitions

The manifold N =M1 ×M2

Let (Mi , gi ) be a smooth Riemannian manifold with metric gi , i = 1, 2. Let
Γ(i) be the connection (or Christoffel symbols) on Mi .
We shall work with the manifold N =M1 ×M2 with the metric g = g1 × g2,
so that TξN = Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2.
If (vi ,wi ) ∈ Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2, then we consider the
metric

〈(v1,w1), (v2,w2)〉ξ = 〈v1, v2〉ξ1 + 〈w1,w2〉ξ2 = (G1(ξ1)v1, v2) + (G2(ξ2)w1,w2).

With a slight abuse of notation, let us write G(ξ) = diag(G1(ξ1),G2(ξ2)).

Gradient and Hessian: DNC = (Dx C ,Dy C), D2
NC =

(
DN ,xx C DN ,xy C
DN ,xy C DN ,yy C

)
.

In coordinates, with i, j, k ∈ {1, . . . , N}, D2
N C =


∂2C
∂xi∂xj

∂2C
∂xi∂yj

∂2C
∂yj∂xi

∂2C
∂yi∂yj

 −
 Γ(1)k (x) ∂C

∂xk
0

0 Γ(2)k (y) ∂C
∂yk

.

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Key concept: A priori connections on N =M1 ×M2

This is a key concept that allows to actually compare patches in
both manifolds. It is an an operator that connects the tangent plane at
both points in comparison.

An a priori connection between both manifolds is a field of linear
maps which for each pair of points (x , y) ∈M1 ×M2, maps
isometrically the tangent space at x with the tangent space at y .

Definition. We say that P(ξ), ξ = (ξ1, ξ2) ∈ M, is an a priori
connection map in N if P(ξ) : (Tξ1M1,G1(ξ1))→ (Tξ2M2,G2(ξ2))
is an isometry, i.e.

〈P(ξ)v ,P(ξ)w〉G2(ξ2) = 〈v ,w〉G1(ξ1) ∀v ,w ∈ Tξ1M1,

and we assume also that the map is differentiable in ξ.

IfM1 = M2 (orientable), P(ξ) can be considered as an internal a priori connection (into itself) given from parallel transport between

ξ1 and ξ2, which is an isometry.
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Axiomatic approach
Considering images defined on Riemannian manifolds we exploit an axiomatic
approach1,2,3 to obtain multiscale affine invariant patch similarity measures.

A Set of Axioms

A Family of Partial Differential Equations

Multiscale Similarity Measures

1 L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental
equations of image processing, Archive for Rational Mechanics and Analysis, 1993.
2 F. Calderero and V. Caselles, Multiscale Analysis for Images on Riemannian

Manifolds, SIAM J. Imaging Sciences 2014.
3 C. Ballester, F. Calderero, V. Caselles and G. Facciolo, Multiscale analysis of

similarities between images on Riemannian manifolds, SIAM Multiscale Modeling &

Simulation, 2014.
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Multiscale analyses
Definition

A “multiscale analysis” is a family of transforms Tt , t ≥ 0,
which, when applied to a given function u0, yield a sequence of
functions u(t) = Ttu0 at different scales.

In our case of multiscale analysis of image similarity measures†:

Let Tt : Cb(N )→ Cb(N ) be a nonlinear operator for any t ≥ 0.

where:

N =M1 ×M2 is a product manifold.

Cb(N ) denotes the space of bounded continuous functions on N with the
maximum norm.

D ∈ Cb(N ) denotes a similarity measure on N .

† C. Ballester, F. Calderero, V. Caselles and G. Facciolo, Multiscale analysis of

similarities between images on Riemannian manifolds, SIAM MMS, 2014.
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The Set of Axioms

Let TtD(ξ) be a multiscale analysis of image similarity measures,
for all D ∈ Cb(N ), ξ = (ξ1, ξ2), t ≥ 0.

Architectural axioms:

• Recursivity: T0(D) = D, Th(TtD) = Tt+hD0,∀t, h ≥ 0;

• Infinitesimal generator: independence of the choice of step h;

• Regularity: ”continuity” of Tt ;

• Locality;

Comparison principle: TtD ≤ TtD̃, ∀t ≥ 0 and all D ≤ D̃;

Gray level shift invariance: Tt(0) = 0, Tt(D + κ) = Tt(D) + κ,
∀κ ∈ R.
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Multiscale analysis of image similarity measures
Theorem

Let Tt be a multiscale analysis satisfying all the Architectural axioms, and the Compari-
son principle. Then, there exists a function F : SMξ(N )×T ∗ξN ×R×N → R increasing
with respect to its first argument such that

Tt(D, ψ)− (D, ψ)

t
→ F (D2(D ◦ ψ)(0),D(D ◦ ψ)(0),D(ξ), ξ,G , Γk ) in Cb(N )

as t → 0+, for all D ∈ C∞b (N ), ψ being a coordinate system around ξ ∈ N . The function
F is continuous in its first three arguments.

If we assume that Tt is gray level shift invariant, then the function F does not depend
on D.

The function F is elliptic, i.e., if A1,A2 : TξN → T ∗ξN are two matrices such that A1,A2

are symmetric and A1 ≤ A2, p ∈ T ∗ξN , c ∈ R, then

F (A1, p, c, ξ,G , Γ
k ) ≤ F (A2, p, c, ξ,G , Γ

k ).

Theorem

Let Tt be a multiscale analysis satisfying all the Architectural axioms, the Comparison
principle, and Gray level shift invariance.
If D(t, ξ) = TtD(ξ), then D is a viscosity solution of

∂D
∂t

= F (D2
ND,DD, ξ,G , Γk ),

with D(0, ξ) = D(ξ).
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The linear case

Architectural axioms:

• Recursivity: T0(D) = D, Th(TtD) = Tt+hD0,∀t, h ≥ 0;

• Infinitesimal generator: independence of the choice of step h;

• Regularity: ”continuity” of Tt ;

• Locality;

Comparison principle: TtD ≤ TtD̃, ∀t ≥ 0 and all D ≤ D̃;

Gray level shift invariance;

Linearity: Tt(aD + bD̃) = aTt(D) + bTt(D̃), ∀a, b ∈ R.
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The linear case
Theorem

Let Tt be a multiscale analysis on similarity functions satisfying
the axioms: all Architectural, Comparison principle, Gray
level Shift invariance and Linear. Then

∂D
∂t

= F (D2
ND, ξ,G ),

where

F (X , ξ,G ) = c11(ξ)Tr(G−1
1 (ξ1)X11) + 2c12(ξ,G )Tr(D̄12I1(ξ1)−1X12)

+c22(ξ)Tr(G−1
2 (ξ2)X22),

ξ = (ξ1, ξ2), D̄12 is an isometry from (Tξ1M1,G1(ξ1))→ (Tξ2M2,G2(ξ2)).
The ellipticity of F implies that c11, c22 ≥ 0.

• the operators cii (ξ)Tr((Gi )
−1(ξi )Xii ) are multiples of the Laplace-Beltrami

operator.
• There are no first order terms in these operators. They cannot couple with vectors so that

we have the invariance induced by the rotations of tangent planes.

• 2c12(ξ,G)D̄12I1(ξ1)−1 = B2(ξ2)D′B1(ξ1)t (where B1(ξ1) and B2(ξ2) are isometries) is

related with the a-priori connection.
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Practical situation: M1 = (RN , g1(x)), M2 = (RN , g2(y))
Let x ∈M1, y ∈M2.

ek = Gi (x)−1/2f k is a orthonormal basis of (TxMi , gi (x)), if f k is an Euclidean
orthonormal basis.

We can define P(x, y)(v) = G2(y)−1/2G1(x)1/2v, v ∈ RN , as an a
priori connection of x and y .

Then |P(x, y)v|g2 = |v|g1 for all (x , y) ∈ R2N .

The PDE obtained is

∂D
∂t

= a(x, y)∆MxD + 2c12(x, y)Tr(G2(y)−
1
2 G1(x)−

1
2 DxyD) + c(x, y)∆MyD,

where

∆MxD = Tr(G 1(x)−1(DxxD(x)−Γ(1)(DD)(x))) (and similarly for the operator ∆My ).

This will permit to construct also an operator in the case of video.
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Linear multiscale analysis of similarities

Singularizing one of them1, a linear multiscale similarity measure D(t, x, y) is

a solution of the PDE

∂D
∂t

= Tr(G1(x)−1D2
xD) + 2Tr(G2(y)−

1
2 G1(x)−

1
2 DxyD) + Tr(G2(y)−1D2

yD) .

That is:

∂D
∂t

= Tr(G1(x)−1D2
xD) + 2Tr(P(x, y)G1(x)−1D2

xyD) + Tr(G2(y)−1D2
yD),

where P(x, y) = G2(y)−
1
2 G1(x)

1
2 is an a priori connection of x and y . It

gives the tool to automatically and intrinsically transform the patches in
comparison.

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale

Analysis of Similarities between Images on Riemannian Manifolds: Practical Formula

and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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Linear multiscale analysis of similarities
Singularizing one of them1, a linear multiscale similarity measure D(t, x, y) is

a solution of the PDE
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yD),

where P(x, y) = G2(y)−
1
2 G1(x)

1
2 is an a priori connection of x and y . It

gives the tool to automatically and intrinsically transform the patches in
comparison.

The computational complexity of solving this equation is determined by the

product manifold M1 ×M2, thus is of order S4, if each image is determined

on a grid of size S2.

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale

Analysis of Similarities between Images on Riemannian Manifolds: Practical Formula

and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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Approximate solution

For that reason, we used1 the WKB (Wentze-Kramers-Brillouin)
approximation method to find a solution of the previous PDE, and obtain the
following applicable similarity measure

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale Analysis of Similarities between Images on Riemannian

Manifolds: Practical Formula and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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Approximate solution

For that reason, we used1 the WKB (Wentze-Kramers-Brillouin)
approximation method to find a solution of the previous PDE, and obtain the
following applicable similarity measure

D(t, x , y) =

∫
R2

ηt(h)
(
u(x + G1(x)−

1
2 h)− v(y + G2(y)−

1
2 h)
)2

dh.

where ηt(h) is an approximated geodesic weighting function, for instance

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale Analysis of Similarities between Images on Riemannian

Manifolds: Practical Formula and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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2 h)
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D(t, x , y) =
H√
t

∫
R2

e−d(x,x+G1(x)
− 1

2 h)2/t
(
u(x + G1(x)−

1
2 h)− v(y + G2(y)−

1
2 h)
)2

dh.

where d(x , x ′) represents a geodesic distance in M1.

d(x , x + G1(x)−
1
2 h)2 could be approximated as

κspatial‖G1(x)−
1
2 h‖2 + κcolor |u(x)− u(x + G1(x)−

1
2 h)|2, κspatial , κcolor > 0.

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale Analysis of Similarities between Images on Riemannian

Manifolds: Practical Formula and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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approximation method to find a solution of the previous PDE, and obtain the
following applicable similarity measure

D(t, x , y) =

∫
R2

ηt(h)
(
u(x + G1(x)−

1
2 h)− v(y + G2(y)−

1
2 h)
)2

dh.

where ηt(h) is an approximated geodesic weighting function, for instance

D(t, x , y) =
H√
t

∫
R2

e−d(x,x+G1(x)
− 1

2 h)2/t
(
u(x + G1(x)−

1
2 h)− v(y + G2(y)−

1
2 h)
)2

dh.

where d(x , x ′) represents a geodesic distance in M1.

d(x , x + G1(x)−
1
2 h)2 could be approximated as

κspatial‖G1(x)−
1
2 h‖2 + κcolor |u(x)− u(x + G1(x)−

1
2 h)|2, κspatial , κcolor > 0.

Last step: Which metrics g1 and g2?

1 V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale Analysis of Similarities between Images on Riemannian

Manifolds: Practical Formula and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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Which metrics g1 and g2?

• Appropriate metrics defined on the data domain and depending
on the data.

• One possibility is to choose the metrics such as the
corresponding similarity measure is affine invariant.

By affine invariance in this setting we mean that the similarity values are
invariant to affine warpings of any of the images.

• The corresponding patch-based similarity measure will be able to
detect the scene similarities despite the view distortions.
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Structure Tensors as Metrics on the image domain

The a priori connection will be then determined up to a rotation (for each pair

(x , y)), which can be determined based on the data.
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Affine covariant structure censor
Let u be a given image.

Definition

A structure tensor is said to be affine covariant, if for any affinity A

TuA (x) = AtTu(Ax)A,

where uA(x) := u(Ax) denotes the affinely transformed version of u.

Given an affine covariant structure tensor Tu(x) we can define a region (or
patch) of “radius” r , centered at x , which is affine covariant as well

Bu(x , r) = {y ∈ R2 : 〈Tu(x)(y − x), (y − x)〉 ≤ r 2}.

(i.e., BuA (x , r) = A−1Bu(Ax , r))
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Computation of structure tensors and patches
• Let u : Ωu → R be a given image. Assume Ωu = R2, to simplify.

• For each x ∈ Ωu, let Tu(x) be the affine covariant structure tensor of u at
x defined by the following iterative algorithm, which also provides their
corresponding affine covariant neighborhoods:

T (k)
u (x) =

∫
B

T
(k−1)
u

(x,r)
Du(y)⊗ Du(y) dy

Area(B
T

(k−1)
u

(x , r))
,

for k ≥ 1, where

B
T

(0)
u

(x , r) = {y : |Du(x)(y − x)| ≤ r},

and
B

T
(k)
u

(x , r) = {y : 〈T (k)
u (x)(y − x), (y − x)〉 ≤ r 2}

for k ≥ 1. We obtain a field of affine covariant tensors and neigbor-
hoods.

V. Fedorov, P. Arias, R. Sadek, G. Facciolo, and C. Ballester, Linear Multiscale Analysis of Similarities between Images on Riemannian

Manifolds: Practical Formula and Affine Covariant Metrics. SIAM J. Imaging Sciences. 2015.
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Shape-adaptive Patches at Different Iterations

After approximate convergence, every 25 pixels:

Image source: Vadim Fedorov
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An afffine invariant patch similarity measure

Summarizing

• Let u : Ωu → R and v : Ωv → R be two given images, Ωu,Ωv ⊆ R2.

• For each x ∈ Ωu, let Tu(x) be the affine covariant structure tensor of u at x .
Similarly, let Tv (y) be the affine covariant structure tensor of v at y , for all
y ∈ Ωv .

• Consider the two Riemannian manifolds Mx = (R2,Tu), My = (R2,Tv ) and
the affine invariant patch distance

Da(t, x , y) =

∫
R2

ηt(h)
(
u(x + Tu(x)−

1
2 h)− v(y + Tv (y)−

1
2 h)
)2

dh.

which approximates a solution of the PDE for the multiscale analysis of
similarity measures satisfying a set of appropriate axioms (architectural axioms,
comparison principle, gray level shift invariance and linearity):

∂D
∂t

= Tr(Tu(x)−1D2
xD) + 2Tr(P(x , y)Tu(x)−1DxyD) + Tr(Tv (y)−1D2

yD)

where P(x , y) = Tv (y)−
1
2 Tu(x)

1
2 .
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An afffine invariant patch similarity measure

The a priory connection allows to extract the affine distortion
between corresponding patches, up to a rotation.

It can be shown that, if u and v differ in an affine transformation given by a
N × N affinity matrix A, then

A = PR (x , y) := Tv (y)−
1
2 RTu(x)

1
2

where y = Ax , R is an orthogonal matrix and PR (x , y) is an a priori connection.

In the general case we have two arbitrary points x and y on two images u and
v , respectively:

P(x , y) = Tv (y)−
1
2 R(x , y)Tu(x)

1
2 .
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Affine Invariant Patch Comparison; Geometrical meaning

In practice it is more suitable to split the rotation into two parts

P(x , y) = Tv (y)−
1
2 Rv (y)R−1

u (x)Tu(x)
1
2 ,

and to compare normalized patches

This is what happens in our similarity measure. It becomes

(G
− 1

2
1 (x) = Tu(x)−

1
2 Ru(x)−1, G

− 1
2

2 (y) = Tv (y)−
1
2 Rv (y)−1)

Da(t, x , y) =∫
R2

ηt(h)
(
u(x + Tu(x)−

1
2 Ru(x)−1h)− v(y + Tv (y)−

1
2 Rv (y)−1h)

)2

dh,

where ηt is an approximated geodesic weighting function or a Gaussian of

variance t.
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Also in video
Appropriate structure tensors as metrics in video u(x, t)

Tu(x, t) =

∫
Eg ((x,t),r)

Dxtu((x, t)+(y, τ))⊗Dxtu((x, t)+(y, τ))µ(y, τ)|G |1/2 dydτ.

where Eg ((x, t), r) =
{
Y = (y, s) : gij (x, t)Y iY j ≤ r 2

}
, g is an initial metric

on M, |G | denotes the determinant of the symmetric matrix G = (gij ) and µ is
a weight measure on Eg ((x, t), r), be either the usual Lebesgue measure or a
weighting function. Our initial metric g is given by

g(x, t) ((y, τ), (y, τ)) = a(x, t)(y − v(x, t)τ)2 + b(x, t)τ 2,

that is, G(x, t) =

(
aI −av

(−av)t b + a |v|2
)

(x, t), where v is the optical flow of

the input video u, (y, τ) denote coordinates in an infinitesimal neighborhood of

(x, t) and the functions a and b are defined as a(x, t) = α1 + α2|∇xu|p,

b(x, t) = β1 + β2(∂vu)p, with α1, α2, β1, β2 > 0, p > 0 (usually p = 1, 2), and

∂vu = v · ∇xu + ut denotes the convective derivative.

P. Vitoria, V. Fedorov and C. Ballester. Spatio-temporal tube segmentation through a

video metrics-based patch similarity measure. IMVIP 2017.
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Iterative algorithm that simulates affine covariance

T
(k)
u (x, t) =

∫
B

NT
(k−1)
u

((x,t),r) Dxt u((x, t) + (y, τ))⊗ Dxt u((x, t) + (y, τ))µ(y, τ)|G |1/2 d(y, τ)

Volume
(

B
T

(k−1)
u

((x, t), r)
)

and

B
T

(k)
u

((x, t), r) =

{ {
(y, τ) : 〈G((x, t)) ((y, τ) − (x, t)) , ((y, τ) − (x, t))〉 ≤ r2

}
when k = 0{

(y, τ) : 〈T (k)
u (x, t) ((y, τ) − (x, t)) , ((y, τ) − (x, t))〉 ≤ r2

}
when k > 0
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Structure tensors as metrics in video

P. Vitoria, V. Fedorov and C. Ballester. Spatio-temporal tube segmentation through a

video metrics-based patch similarity measure. IMVIP 2017.
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Structure tensors as metrics in video, synthetic example
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Structure tensors as metrics in video, synthetic example

Figure : Visualization of 3D-shape adaptive patches (in red) corresponding to
the tensor on a point on the dear.

Image source: Patricia Vitoria
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Structure tensors as metrics in video

Figure : Visualization of a 3D-shape adaptative patch (red) E corresponding to
the tensor on a point on a ear of the deer.

Image source: Patricia Vitoria
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Structure tensors as metrics in video

Figure : Visualization of a 3D-shape adaptative patch (red) E corresponding to
the tensor on a point on the tail of the deer.

Image source: Patricia Vitoria
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Structure tensors as metrics in video
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Structure tensors as metrics in video
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Structure tensors as metrics in video
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Structure tensors as metrics in video

First Row: visualization of the first frame and the patch corresponding to a point x that belongs to the hair of the white t-shirt’s man.

Second row: Last three frames: once the man is occluded (last frame), the patch stops.
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Applications

1. Image and Video denoising.

2. Exemplar-based inpainting.

3. Image segmentation

4. Video simplification/segmentation, spatio-temporal tubes for video
analysis.

5. Depth completion by a geodesic Biased AMLE method

6. Motion inpainting by an image based geodesic AMLE method

7. Dynamic shape disocclusion.
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1. Image and Video denoising
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Denoising problem

Common noise model for images obtained with charge-coupled device
(CCD):

ũ(x) = u(x) + n(x)

where ũ(x) is a Poisson random variable, u(x) is its mean, and n(x) is
added noise.

Using the Anscombe transform Poisson noise can be converted into
Gaussian noise.
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Reminder: X1,X2, . . . ,Xn, . . . i.i.d. random variables with zero mean, variance
σ2. They represent noise and σ2 represents the power of the noise.
Let

X n =
X1 + X2 + . . .+ Xn

n
.

Since E(X n) = 0, the variance of X n is E((X n − E(X n))2) = σ2

n
. The basic

principle for denoising: averaging reduces noise variance by a factor n.

Assume now that for each i = 1, 2, . . ., Ui = a + Xi , where a is a common
value (representing the clean data), and Xi represents noise (i.i.d., zero mean,
variance σ2). Let us average Ui :

Un =
U1 + U2 + . . .+ Un

n
= a +

X1 + X2 + . . .+ Xn

n
= a + X n.

Again, E((Un − E(Un))2) = E(X
2
n) = σ2

n
.

Then: If we have observed n values of a signal Ui and we are sure that these

values share the same deterministic value a and differ only in the noise, its

average is an estimation of a that reduces the noise power (variance) by a

factor n.
Difficulty: How do we ensure that the observed values share the same
deterministic signal ?

For that we use weights.
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Non-Local Means denoising

Image source: Vadim Fedorov
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Non-Local Means denoising

V. Fedorov and C. Ballester. Affine Non-local Means Image Denoising. IEEE

Transactions on Image Processing. 2017.
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Non-Local Means denoising

Let u be a (noisy) color image in RGB color space.

Let pu(y) be a noisy patch of u at y , then the denoised patch is

p̂u(x) =
1∑

y S(x , y)

∑
y∈W (x)

S(x , y) · P(y , x)pu(y),

where

S(x , y) = e−
Da(t,x,y)

λ2 and P(y , x) = Tu(x)−
1
2 Ru(x)−1Ru(y)Tu(y)

1
2 .

Da(t, x , y) =∫
ΩP

gt(h)
∥∥∥u(x + Tu(x)−

1
2 Ru(x)−1h)− u(y + Tu(y)−

1
2 Ru(y)−1h)

∥∥∥2

2
dh,
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Image denoising

σ noisy image NL-Bayes NL-Means Our .

20

20

30

30
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Image denoising

σ noisy image NL-Bayes NL-Means Our .
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30
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40

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Image denoising

noisy image NL-Bayes NL-Means Our .
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Quantitative comparison (PSNR)

Table : PSNR values for noise σ = 2, 5, 10, 20, 30 and 40

NL-Bayes NL-means our NL-Bayes NL-means our
σ = 2 σ = 20

Alley 45.28 42.68 43.37 31.17 29.98 30.15
Computer 45.81 43.93 44.67 32.98 31.67 32.03

Dice 49.17 48.12 48.22 40.17 38.31 39.62
Flowers 47.75 46.31 46.89 36.14 34.53 36.08

Girl 47.67 46.71 46.71 38.62 36.92 38.02
Traffic 45.17 43.45 44.00 31.24 30.14 30.46
Trees 43.44 42.15 42.62 27.36 26.37 26.40

Valldemossa 45.07 43.26 43.67 29.72 28.44 28.51

σ = 5 σ = 30

Alley 39.14 37.25 37.31 29.15 27.85 28.37
Computer 40.54 38.93 39.15 30.68 29.28 30.06

Dice 46.02 44.93 45.22 37.95 36.92 37.54
Flowers 43.29 42.17 42.74 33.85 32.35 34.11

Girl 44.18 43.36 43.37 36.69 35.58 36.25
Traffic 39.39 37.59 38.01 29.03 27.74 28.54
Trees 36.54 34.71 35.03 25.03 23.79 24.31

Valldemossa 38.62 35.96 36.70 27.35 25.89 26.46

σ = 10 σ = 40

Alley 34.82 33.64 33.55 27.77 26.48 27.11
Computer 36.68 35.54 35.40 29.04 27.61 28.57

Dice 43.20 41.92 42.63 36.24 35.26 36.05
Flowers 39.53 38.59 39.38 32.13 30.58 32.70

Girl 41.43 40.40 40.85 35.06 34.17 35.00
Traffic 35.15 34.05 34.10 27.52 26.23 27.17
Trees 31.70 29.59 30.31 23.50 22.42 22.88

Valldemossa 33.96 32.15 32.33 25.81 24.46 25.04
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Video denoising

Figure : Left image: noisy frame from a sequence. Right image: corresponding
denoised frame from a sequence.

P. Vitoria, Master thesis, 2017.
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Video denoising

Figure : First column: Original frame. Second Column: noisy frame with
σ = 10. Third Column: Denoised frame with σ = 10. Fourth Column: noisiy
frame with σ = 20. Fifth Column: Denoised frame with σ = 20.
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Video denoising

Figure : RMSE results for Color sequences: the values correspond to the RMSE
(Averaged over the three channels) computed for the central frame of each
sequence. The average RMSE for each method and each noise level is displayed
in the last column.
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2. Exemplar-based inpainting
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Exemplar-based inpainting

Image source: Vadim Fedorov
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Now
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Affine-invariant self-similarity and its variational formulation for inpainting

We pose inpainting as minimization of the following energy functional:

E (u, ϕ) =

∫
Õ

Da (t, x , ϕ(x)) dx .

Here u is the unknown part and û is the known part of the image. Õ
contains centers of incomplete patches, and ϕ is the correspondence map:

u
û

x

φ(x)

E (u, ϕ,G ) =∫
Õ

∫
Ωp

gt(h)
(
u
(
x + G (x)−

1
2 h
)
−û
(
ϕ(x) + Tû(ϕ(x))−

1
2 Rû(ϕ(x))−1h

))2

dhdx

V. Fedorov, P. Arias, G. Facciolo, and C. Ballester, Exemplar-Based Image Inpainting

Using an Affine Invariant Similarity Measure. International Joint Conference on

Computer Vision, Imaging and Computer Graphics. 2016.
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Inpainting results

Image source: Vadim Fedorov
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Inpainting results

Image source: Vadim Fedorov
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One view inpainted using another view

Figure : Source image, target image, [Wexler et al]-[Arias et al], and our
method
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One view inpainted using another view

Figure : Source image, target image, [Wexler et al]-[Arias et al], and our
method
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Projective transformation

Figure : First row: image with the inpainting domain shown in red. Second
row: [Wexler et al]-[Arias et al], method of Mansfield et al. (2011), method of
Huang et al. (2014), and our method.
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Lens distortion

Figure : First row: image with the inpainting domain shown in red. Second
row: [Wexler et al]-[Arias et al], method of Mansfield et al. (2011), method of
Huang et al. (2014), and our method.
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3. Image segmentation

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Image segmentation into homogeneous textured regions

Segmentation: partition of an image into regions which share common features.

Goals

I Characterizing the image regions that have local homogeneous texture
regardless of differences in the point of view or suffered local perspective
or affine distortion.

I Obtaining a patch representative of the texture of each region.

How: a variational segmentation method that considers shape and size
adaptive patches to characterize, in an affine way, the local structure of each
homogeneous texture region of the image.

They are used in an L1-norm fidelity term and the total variation of fuzzy

membership functions as relaxed length of the boundaries of the segmentation

regions1,2.

1 M. Oliver, G. Haro, V. Fedorov and C. Ballester. L1 Patch-based Image Partitioning
into Homogeneous Textured Regions. In Proceedings of the 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing. 2018.
1 M. Oliver, SIAM Conference on Imaging Science, June 2018, Bologna (Italy)

(Poster presentation) Best poster award (2nd position)
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Image segmentation

Let u : Ω→ RM be an image, and let Tu(x) be the spatially varying
Riemannian metric given by the affine covariant tensor associated to u.

Let Pu be the set of all patches obtained from u and defined using
Tu(x) at all x ,

Pu = {pu(x), x ∈ Ω},

where pu : Ω→ Lq(∆t) denote the function given by pu(x) := pu(x , ·),

where pu(x , h) := u(x + Tu(x)−
1
2 h), and h ∈ ∆t , a disc centered at the

origin with radius proportional to t.

Let us notice that, thanks to the tensors, these elliptical patches can be
considered defined on the normalized disc ∆t .

From now on, with an abuse of notation, pu(x) will denote the
normalized discs.
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Image segmentation

Image source: Maria Oliver
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Image segmentation

Proposal 1: to simplify the set of all patches Pu by estimating an optimal finite
set of representative patches {pΩ1 , . . . , pΩN } , where Ω = ∪N

i=1Ω̄i is a partition
of the image domain into N disjoint open regions Ωi , containing the pixels
with similar patches, for N ∈ N, with the energy:

E(p, χ) =
N∑

i=1

∫
Ω

|∇χΩi (x)| dx︸ ︷︷ ︸
Regularity term (boundary length)

+λ
N∑

i=1

∫
Ω

Da,1
t (p(x), pu(x))χΩi (x)dx︸ ︷︷ ︸

Data term

, λ ≥ 0

where p =
∑

i pΩiχΩi is a piecewise constant patch function,
χΩi ∈ BV (Ω; {0, 1}) the characteristic function of Ωi , χ = (χΩ1 , . . . , χΩN ) such
that

∑
i χi (x) = 1, ∀x ∈ Ω, and

Da,1
t (pu(x), pu(y)) =

∫
∆t

ηt(h)
∥∥∥u(x + Tu(x)−

1
2 h)− u(y + Tu(y)−

1
2 h)
∥∥∥

L1
dh.

1 M. Oliver, G. Haro, V. Fedorov and C. Ballester. L1 Patch-based Image Partitioning into Homogeneous Textured Regions. In

Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018.
C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Image segmentation
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i=1Ω̄i is a partition
of the image domain into N disjoint open regions Ωi , containing the pixels
with similar patches, for N ∈ N, with the energy:
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∫
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+λ
N∑

i=1

∫
Ω
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t (p(x), pu(x))χΩi (x)dx︸ ︷︷ ︸

Data term

, λ ≥ 0

where p =
∑

i pΩiχΩi is a piecewise constant patch function,
χΩi ∈ BV (Ω; {0, 1}) the characteristic function of Ωi , χ = (χΩ1 , . . . , χΩN ) such
that

∑
i χi (x) = 1, ∀x ∈ Ω, and by analogy and by an abuse of notation we

have denoted by Da,1
t (p(x), pu(x)) the patch similarity∫
∆t

ηt(h)
∥∥∥pΩi (h)− u(x + Tu(x)−

1
2 h)
∥∥∥

L1
dh,

for x ∈ Ωi .

1 M. Oliver, G. Haro, V. Fedorov and C. Ballester. L1 Patch-based Image Partitioning into Homogeneous Textured Regions. In

Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018.
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Image segmentation

Relaxation: relax the characteristic functions to be fuzzy membership functions

belonging to the set C =
{

(ω1, . . . , ωN ) |ωi ∈ BV (Ω; [0, 1]), 0 ≤ ωi (x) ≤

1,
∑N

i=1 ωi (x) = 1, ∀x ∈ Ω
}
. ωi (x) describes the fuzzy membership of a pixel x

and can be understood as the probability that x belongs to the region Ωi
2.

Let ω be ω = (ω1, . . . , ωN ) which is often denoted as an N-phase fuzzy
membership function.

In this framework, the previous energy writes

min
(p,ω)∈L1(Ω;L1(∆t ))×C

Ē(p, ω) =
N∑

i=1

∫
Ω

|∇ωi (x)|dx︸ ︷︷ ︸
Es (ω)

+λ
N∑

i=1

∫
Ω

Da,1
t (p(x), pu(x))ωi (x)dx︸ ︷︷ ︸

Ed (p,ω)

.

2 F. Li, S. Osher, J. Qin, and M. Yan. A multiphase image segmentation based on

fuzzy membership functions and l1-norm fidelity. J Sci Comput, 2016.
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Input & patch Li. et. al [Li] Ours Discs

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Input & patch Li. et. al [Li] Ours Discs
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4. Video simplification/segmentation,
spatio-temporal tubes for video analysis
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Spatio-temporal tube computation in video

Spatio-temporal tube computation is an over-segmentation
technique that group together into spatio-temporal regions
pixels following a similarity criterion. The tube aims to
represent the trajectory in the moving scene of each object.

Problem: Changes of position, illumination, and the interaction
of the objects with the surrounding makes the problem even
more challenging.

Solution Affine invariant 3D patch similarity measure.
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Video segmentation, spatio-temporal tubes

Example of Spatio-temporal tube (following the helmet)

P. Vitoria, V. Fedorov and C. Ballester. Spatio-temporal tube segmentation through a

video metrics-based patch similarity measure. IMVIP 2017.
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Video segmentation, spatio-temporal tubes

Figure : Synthetic sequences. A ball falling down: Tube computation from a
white point inside the ball (seen as a disc on each temporal frame).

C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Video segmentation, spatio-temporal tubes

Figure : Synthetic sequences. Tube computation from a point inside of a deer
that rotates each frame by 10 degrees counterclockwise.
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Video segmentation, spatio-temporal tubes

Figure : Real sequences. Tube of the right ball.
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Video segmentation, spatio-temporal tubes

Figure : Real sequences. Tube computation from a white point inside of the
”WC” sign. From left to right: Frame 4, 10 and side view. Notice, that when
the sign is occluded by the black T-shirt’s man, the tube also gets reduced.
The tube groups together all the pixels with similar texture, for that reason the
letter ”WC” remains outside of the region/tube.
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Spatio-temporal tubes following the helmet (first image) and the tongue of the man

(second to fourth image). The tongue is occluded in the first frame (second image)

and disoccluded in the fourth frame (third image) and again disappear in the tenth

frame (fourth image) when only the background of the mouth is visible.
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6. Motion inpainting by an image based
geodesic AMLE method
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Motion inpainting
Optical flow or motion inpainting is a pervasive problem:

I semantic video analysis,

I video editing,

I to optical flow estimation in occlusion and disocclusion regions,

I video inpainting; cinema post-production (elimination of unwanted moving
objects),

I automatic assistance of sensor-based optical flow estimation (e.g., in Kitti
Vision benchmark)

Goal: Given a video and an incomplete motion field, an automatic method to
complete it.

How: Each 2D frame domain is endowed with a Riemannian metric based on

the video values and the missing optical flow are recovered by solving the

Absolutely Minimizing Lipschitz Extension (AMLE) partial differential equation

on the 2D Riemannian manifold from the known values on the boundary of the

interpolation domain1,2.

1 V. Lazcano, PhD thesis Some Problems in Depth Enhanced Video Processing. Universitat Pompeu Fabra. February 2016.

2 M. Oliver, L. Raad, C. Ballester and G. Haro. Motion inpainting by an image-based geodesic amle method. ICIP 2018.
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Motion inpainting
Let I (x, t) be a video defined on Ω× {1, . . .T}, where Ω ⊂ R2 denotes the
image frame domain and {1, . . .T} is the set of discrete times

Let v = (v1, v2) be the optical flow of the video I representing the apparent
motion between a pixel x ∈ Ω \ Ω0(t) at time t and the corresponding at time
t + 1.

We assume that, at time t, v(x, t) is unknown on a region Ω0(t) ⊂ Ω whose
boundary, denoted by ∂Ω0, consists of a finite union of smooth curves and
possibly isolated points.

We endow Ω, at each time t, with a metric g(t). Let M(t) = (Ω, g(t)) be the
corresponding Riemannian manifold.

We propose to complete v in Ω0(t) with the motion field (u1, u2) such that
u1 and u2 are solutions, respectively, of the geodesic AMLE, given by the PDE

∆∞,gu = 0 in Ω0(t) s.t u|∂Ω0(t) = vi,

for i = 1, 2, respectively. We also use Newmann boundary conditions on ∂Ω.C. Ballester (UPF) Workshop 2018 Nonlocal Data Comparison



Motion inpainting

Here we have denoted

∆∞,gu := D2
Mu

(
∇Mu

|∇Mu| ,
∇Mu

|∇Mu|

)
(1)

where ∇Mu and D2
Mu denote, respectively, the gradient and the Hessian on

the manifold. To simplify, we have omitted the dependence on t of g and M.

When g is the Euclidean metric, the operator in (1) is known as the infinity
Laplacian.

The metric g can be affine covariant structure tensors or, e.g., taking into

account spatial distances and photometric similarities.
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Motion inpainting

Frame 16 Ground truth optical flow with the inpainting region indicated with a box

Ours2 (EPE: 1.5582) EpicFlow1 (EPE: 2.8584)

Some optical flow inpainting results for a frame of the temple 3 sequence of
MPI-Sintel benchmark.

1 J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving
interpolation of correspondences for optical flow. CVPR 2015.
2 M. Oliver, L. Raad, C. Ballester and G. Haro. Motion inpainting by an image-based

geodesic amle method. ICIP 2018.
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The geodesic AMLE on a finite graph
We solve the AMLE equation on the manifold with an efficient numerical
algorithm which is based on the eikonal operators for nonlinear elliptic PDEs on
a finite graph [Oberman’2005], [Manfredi et al’2015].

In particular, we consider the discrete grid of Ω as the nodes of a finite
weighted graph G . If x and y are neighbouring pixels, its distance is denoted by
d(x, y). We test also

d1(x, y) =
√

(1−λ)‖I (x, t)−I (y, t)‖2+λ‖x− y‖2

d2(x, y) = (1−λ)‖I (x, t)−I (y, t)‖+ λ‖x− y‖

where λ ∈ [0, 1]. We also include

d3(x, y) = (1−λ)‖I (x, t)−I (y, t)‖2+λ‖x− y‖2

which is a semimetric.

Given a path γ = {γ(i)}m
i=0 on the graph G joining two points, x = γ(0) and

y = γ(m), its length is defined as usual by Lg (γ) =
∑m−1

i=0 d(γ(i), γ(i + 1)).
Given any two points x and y on the grid, then the geodesic distance dg (x, y) is

dg (x, y) = inf{Lg (γ) : γ is a curve joining x and y}.

This distance can be computed using Dijkstra’s algorithm.
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The geodesic AMLE on a finite graph
Given a point x on the grid, let N (x) be a neighborhood of x. The positive
and negative eikonal operators [Oberman’2005], [Manfredi et al’2015] are

‖∇u(x)‖+
M = max

y∈N (x)

u(y)− u(x)

dg (x, y)
,

‖∇u(x)‖−M = min
z∈N (x)

u(z)− u(x)

dg (x, z)
.

The discrete infinity Laplacian corresponds to

∆∞,gu(x) =
‖∇u(x)‖+

M + ‖∇u(x)‖−M
2

.

We solve ∆∞,gu = 0 in Ω0(t) s.t u|∂Ω0(t) = vi with the iterative
discrete scheme

uk+1(x) =
dg (x, z)uk (y) + dg (x, y)uk (z)

dg (x, z) + dg (x, y)

where y and z are the pixels providing the maximum and minimun of the eikonals.

This scheme is applied for x ∈ Ω0(t), initializing u0(x) = 0 in that case and keeping

the values of v1(x), respectively v2(x), on the known region Ω \ Ω0 for all k.
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The geodesic AMLE on a finite graph
Given a point x on the grid, let N (x) be a neighborhood of x. The positive
and negative eikonal operators [Oberman’2005], [Manfredi et al’2015] are

‖∇u(x)‖+
M = max

y∈N (x)

u(y)− u(x)

dg (x, y)
,

‖∇u(x)‖−M = min
z∈N (x)

u(z)− u(x)

dg (x, z)
.

The discrete infinity Laplacian corresponds to

∆∞,gu(x) =
‖∇u(x)‖+

M + ‖∇u(x)‖−M
2

.

We solve ∆∞,gu = 0 in Ω0(t) s.t u|∂Ω0(t) = vi with the iterative
discrete scheme

uk+1(x) =
dg (x, z)uk (y) + dg (x, y)uk (z)

dg (x, z) + dg (x, y)
(convergent scheme [Oberman’2005])

where y and z are the pixels providing the maximum and minimun of the eikonals.

This scheme is applied for x ∈ Ω0(t), initializing u0(x) = 0 in that case and keeping

the values of v1(x), respectively v2(x), on the known region Ω \ Ω0 for all k.
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Appl. to optical flow inpainting in occlusion areas

video frame inpainting mask ground truth

d1(x, y) d2(x, y) d3(x, y)

Figure : Comparison of three tested possibilities for the metric illustrated in an
experiment of completion of the optical flow in the occlusion areas (white
regions in image b).
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(2 appl) inpainting in larger holes and sparse-to-dense optical

flow estimation

video frame groundtruth hole’s mask sparse mask

TV (0.7294) R-Inv (0.6387) EF (0.1050) ours (0.1668)

TV (0.0609) R-Inv (0.0562) EF (0.0720) ours (0.0520)

Figure : Comparison of different motion completion algorithms in two different
cases: inpainting of large holes (holes in white in image (c) and results shown
in the 2nd row) and flow densification from a sparse set of matches (shown in
image (d) and results in 3rd row). The methods used are
TV [rudin1992nonlinear], R-Inv [palomares2014rotation], EpicFlow
(EF) [revaud2015epicflow] and ours. For the EpicFlow we consider only the
interpolation step and overwrite the result with the ground truth flow ouside
the inpainting mask. Numbers in parenthesis show the EPE for each result.
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Optical flow inpainting in larger holes

Frame 02 seq. 10 Groundtruth Inpainting

Figure : A result on Kitti dataset that contains large holes.
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SINTEL Ours - EPE EF - EPE

occlusions 5.4198 6.8797
sparse 1% 0.7061 1.8532
sparse 5% 0.4340 1.4199
sparse 30% 0.2241 1.1212
sparse DM 4.4404 4.1507
sparse DM (gt) 2.1360 2.3802
hole 1.7208 1.9587

Table : Comparison of the EPE for EpicFlow and our method in different
situations. The comparison is done over all the training Sintel dataset.

MIDDLEBURY Ours - EPE EF - EPE

sparse 1% 0.1979 0.3105
sparse 5% 0.1053 0.2426
sparse 30% 0.0567 0.1801
sparse DM 0.9216 0.8112
sparse DM (gt) 0.2049 0.2789

Table : Idem. The comparison is done in the Middlebury dataset on the optical
flow corresponding to frames 10 and 11, where the groundtruth is available.

The experiments show that in general our results outperform those of EpicFlow which

has become a reference method for optical flow estimation and a standard technique

for post-processing an estimated and filtered optical flow.
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5. Depth completion by a geodesic Biased
AMLE method
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Depth completion by a geodesic Biased AMLE method
We apply it to the context of depth estimation in images or videos where large
regions of incomplete depth data often appear due to unreliable data,
occlusions, or adquisition failure.

We endow the image or video domain with an anisotropic metric g and
interpolate the missing information by solving the Biased Absolutely
Minimizing Lipschitz Extension (bAMLE) in the manifold, that is,

D2
Mu

(
∇u
|∇u|ξ

,
∇u
|∇u|ξ

)
+ β|∇u|ξ = 0,

or
∆∞,gu + β |∇u|ξ = 0.

where β ≥ 0 and ξ ∈M. The bAMLE (β > 0) favours the extension of data to large

regions and it is an exponential cone interpolator which offers an interesting

alternative since the value at points expands and produces a smoother profile, which

makes it more adapted to depth interpolation in real scenes.

1 V. Lazcano, PhD thesis Some Problems in Depth Enhanced Video Processing.
Universitat Pompeu Fabra. February 2016.
2 V. Lazcano, F. Calderero, and C. Ballester. Interpolation in Manifolds and

Applications to Depth Interpolation in Images and Videos. In ICM 2018.
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The geodesic Biased AMLE on a finite graph
Given a point x on the grid, let N (x) be a neighborhood of x.
Using the positive and negative eikonal operators [Oberman’2005], [Manfredi
et al’2015], the discrete version of the Biased AMLE equation is

‖∇u(x)‖+
x + ‖∇u(x)‖−x

2
+ β

∣∣‖∇u(x)‖+
x

∣∣ = 0

with β > 0. It can be rewritten

β+‖∇u(x)‖+
x + β−‖∇u(x)‖−x = 0, (2)

where β+ > β− (actually, β+ = 1
2

+ βsign(‖∇u(x)‖+
x ) and β− =

1
2
). Notice that, if β+ = β−, it results in a multiple of the infinity

Laplacian.

By introducing these expressions into (2) we obtain the numerical scheme for
the discrete biased AMLE

uk+1(x) =
β+dxzu

k (y) + β−dxyu
k (z)

β+dxz + β−dxy
, k = 0, 1, ....

where y and z are the pixels providing the maximum and minimun of the eikonals.
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Depth completion (image case)

Figure : (a) Color reference image. (b) Initial depth data obtained by a depth
sensor. (c) Result obtained by the biased AMLE.
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Thank you for your attention

http://gpi.upf.edu/
email: coloma.ballester@upf.edu
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